PATHOGENICITY FACTORS OF CORYNEBACTERIUM NON DIPHTHERIAE

Cover Page


Cite item

Full Text

Abstract

Pathogenicity factors of Corynebacterium non diphtheriae - pili, microcapsule, cell wall, pathogenicity enzymes, toxins, that determine the ability of microorganisms to consequentially interact with epithelium of entry gates of the organism, replicate in vivo, overcome cell and humoral mechanisms of protection, are examined in the review. Particular attention in the paper is given to species of non-diphtheria corynebacteria, that are pathogenic for human and able to produce toxins - Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Mechanisms of expression regulation of PLD-exotoxins, its interaction with immune system cells are described.

About the authors

G. G. Kharseeva

Rostov State Medical University

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

N. A. Voronina

Rostov State Medical University

Email: noemail@neicon.ru
Russian Federation

References

  1. Харсеева Г.Г., Алиева А.А. Адгезия Corynebacterium diphtheriae: роль поверхностных структур и механизм формирования. Журн. микробиол. 2014, 4: 109-117.
  2. Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA. 2007, 104: 5145-5150.
  3. Anantharaman V., Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biology. 2003, 4 (2): 2-6.
  4. Aquino de Sa Mda C., Gouveia G.V., Krewer Cda C. et al. Distribution of PLD and Fag A, B, C and Dgenes in Corynebacterium pseudotuberculosis isolates from sheep and goats with caseus lymphadenitis. Genet Mol. Biol. 2013, 36 (2): 265-268.
  5. Baird G.J., Fontaine M.C.Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol. 2007, 137: 179-210.
  6. Baldssari L., Bertuccini M.G., Ammendolia C.R. et al. Effect of iron limitation on slime production by Staphphylococcus aureus. Eur. J. Clin. Microbiol. Infect. 2001, 20: 343-345.
  7. Barocchi M.A., Ries J., Zogaj X. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Eur. J. Clin. Microbiol. Infect. 2006, 10 (3): 2857-2862.
  8. Bernard K.A. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50 (10): 3152-3158.
  9. Billington J.S., Esmay P.A., Songer J.G. et al. Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS Microbiol. Lett. 2002, 208:41-45.
  10. Bonmarin I., Guiso N., Grimont P.A.D. Diphtheriae: a zoonotic disease in France? Vaccine. 2009, 27 (31): 4196-4200.
  11. Bregenzer T, Frei R., OhnackerH. et al. Corynebacterium pseudotuberculosis infection in a butcher. Clin. Microbiol. Infect. 1997, 3 (6): 696-698.
  12. Burkovski A. Cell envelope of corynebacteria: structure and influence on pathogenicity. Hindawi Publishing Corporation ISRN Microbiology, 2013.
  13. Came H.R., Kater J.K., Wickham N. A toxic lipid from the surface of Corynebacterium ovis. Nature. 1956, 178:701-702.
  14. Cazanave C, Kerryl E. et al. Corynebacterium prosthetic joint infection. J. Clin. Microbiol. 2012, 50(5): 1518-1523.
  15. Connor K.M., Quirie M.M., Baird G. et al. Characterization of united kingdom isolates of Corynebacterium pseudotuberculosis using pulsed-field gel electrophoresis. J. Clin. Microbiol. 2000, 38: 2633-2637.
  16. Funke G., Lawson P.A., Collins M.D. Corynebacterium riegelii sp. nov., an unusual species isolated from female patients with urinary tract infections. J. Clin. Microbiol. 1998, 36 (3): 624-627.
  17. Funke G., Von Graevenitz A., Clarridge J.E. et al. Clinical microbiology of corynefopm bacteria. Clin. Microbiol. Rev. 1997, 10 (1): 125-159.
  18. Hansmeier N., Chao T.C., Kalinowski J. et al. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics. 2006, 6: 2465-2476.
  19. Hodgson A.L.M., Carter K., Tachedjian M. et al. Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D.Vaccine. 1999, 17: 802-808.
  20. Kwaszewska A.K., Brewczynska A., Szewczyk E.M. Hydrophobicity and biofilm formation of lipophilic skin Corynebacteria. Polish. J. Microbiol. 2006, 55(3): 189-193.
  21. Mandlik A., Swierczynski A., DasA. et al. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 2007, 64: 111 -124.
  22. MandlikA., SwierczynskiA., DasA. etal. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008, 16 (1): 33-40.
  23. Marchand С. H., Salmeron C., Raad R.B. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J. Bacteriol. 2012, 194 (3): 587-597.
  24. Maximescu R, Oprisan A., Pop A. et al. Further studies on Corynebacterium species capable of producing diphtheria toxin (C. diphtheriae, C. ulcerans, C. ovis). Microbiology. 1974, 82 (1): 49-56.
  25. McKean S., Davies J., Moore R. Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology. 2007, 153 (7): 2203-2211.
  26. McKean S., Davies J., Moore R. Identification of macrophage induced genes of Corynebacterium pseudotuberculosis by differential fluorescence induction. Microbes Infect. 2005, 7: 1352-1363.
  27. Mishra A.K., Das A., Cisar J.O. Sortase catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol. 2007, 189: 3156-3165.
  28. Mishra A.K. , Krumbach K., Rittmann D. et al. Deletion of man C in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant. Microbiology. 2012, 158 (7): 1908-1917.
  29. Moreira L.D.O., Andrade A.F.B.,Vale M.D. et al. Effect of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl. Environ. Microbiol. 2003,69: 5907-5913.
  30. Nelson A., RiesJ., Bagnoli F. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 2007, 66: 329-340.
  31. Oliveira M., Barroco C., Mottola C. et al. First report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus).BMC Vet. Res. 2014,10:218.
  32. Olson M.E., Ceri H., Morck D.G. et al. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 2002, 66:86-92.
  33. Ott L., HollerM., Gerlach R. et al. Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiology. 2010, 10: 2.
  34. Puech V, Chami M.,Lemassu A. et al. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology. 2001, 147 (5): 1365-1382.
  35. Puliti M.,Von Hunolstein C., Marangi M. Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J. Med. Microbiol.2006, 55: 229-235.
  36. Reddy B.S., Chaudhury A., Kalawat U. et al. Isolation, speciation, and antibiogram of clinically relevant non-diphtherial Corynebacteria (Diphtheroids). Indian J. Med. Microbiology. 2012, 30(1): 52-57.
  37. Rogers E.A., Das A., Ton-That H. Adhesion by pathogenic corynebacteria. Adv. Exper. Med. Biol. 2011,715:91-103.
  38. Ruiz J.C., D’Afonseca V, Silva A. et al. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One. 2011,6: 8551.
  39. Sekizuka T., Yamamoto A., KomiyaT. et al. Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage.BMC Microbiology. 2012, 12: 72doi: 10.1186/1471-2180-12-72.
  40. Tsuge Y., Ogino H., Teramoto H. et al. Deletion of cgR_1596 and cgR_2070, encoding NlpC/ P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J. Bacteriol. 2008, 190: 8204-8214.
  41. Wagner J., Ignatius R.,Voss S. et al. Infection of the skin caused by Corynebacterium ulcerans and mimicking classical cutaneous diphtheria. Clin. Infect. Dis. 2001, 33 (9): 1598-1600.
  42. Yeruham L., Elad D., Friedman S. et al. Corynebacterium pseudotuberculosis infection in Israeli dairy cattle. J. Epidemiol. Infect. 2003, 131 (2): 947-955.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Kharseeva G.G., Voronina N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies