ФАКТОРЫ ПАТОГЕННОСТИ CORYNEBACTERIUM NON DIPHTHERIAE

Обложка


Цитировать

Полный текст

Аннотация

В обзоре рассмотрены факторы патогенности Corynebacterium non diphtheriae - пили, микрокапсула, клеточная стенка, ферменты патогенности, токсины, которые обусловливают способность микроорганизмов последовательно взаимодействовать с эпителием входных ворот организма, размножаться in vivo, преодолевать клеточные и гуморальные механизмы защиты. Отдельное внимание в статье уделено видам недифтерийных коринебактерий, патогенных для человека и способных продуцировать токсины - Corynebacterium ulcerans и Corynebacterium pseudotuberculosis. Описаны механизмы регуляции экспрессии PLD-экзотоксина, его взаимодействие с клетками иммунной системы.

Об авторах

Г. Г. Харсеева

Ростовский государственный медицинский университет

Автор, ответственный за переписку.
Email: noemail@neicon.ru
Россия

Н. А. Воронина

Ростовский государственный медицинский университет

Email: noemail@neicon.ru
Россия

Список литературы

  1. Харсеева Г.Г., Алиева А.А. Адгезия Corynebacterium diphtheriae: роль поверхностных структур и механизм формирования. Журн. микробиол. 2014, 4: 109-117.
  2. Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA. 2007, 104: 5145-5150.
  3. Anantharaman V., Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biology. 2003, 4 (2): 2-6.
  4. Aquino de Sa Mda C., Gouveia G.V., Krewer Cda C. et al. Distribution of PLD and Fag A, B, C and Dgenes in Corynebacterium pseudotuberculosis isolates from sheep and goats with caseus lymphadenitis. Genet Mol. Biol. 2013, 36 (2): 265-268.
  5. Baird G.J., Fontaine M.C.Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol. 2007, 137: 179-210.
  6. Baldssari L., Bertuccini M.G., Ammendolia C.R. et al. Effect of iron limitation on slime production by Staphphylococcus aureus. Eur. J. Clin. Microbiol. Infect. 2001, 20: 343-345.
  7. Barocchi M.A., Ries J., Zogaj X. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Eur. J. Clin. Microbiol. Infect. 2006, 10 (3): 2857-2862.
  8. Bernard K.A. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50 (10): 3152-3158.
  9. Billington J.S., Esmay P.A., Songer J.G. et al. Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS Microbiol. Lett. 2002, 208:41-45.
  10. Bonmarin I., Guiso N., Grimont P.A.D. Diphtheriae: a zoonotic disease in France? Vaccine. 2009, 27 (31): 4196-4200.
  11. Bregenzer T, Frei R., OhnackerH. et al. Corynebacterium pseudotuberculosis infection in a butcher. Clin. Microbiol. Infect. 1997, 3 (6): 696-698.
  12. Burkovski A. Cell envelope of corynebacteria: structure and influence on pathogenicity. Hindawi Publishing Corporation ISRN Microbiology, 2013.
  13. Came H.R., Kater J.K., Wickham N. A toxic lipid from the surface of Corynebacterium ovis. Nature. 1956, 178:701-702.
  14. Cazanave C, Kerryl E. et al. Corynebacterium prosthetic joint infection. J. Clin. Microbiol. 2012, 50(5): 1518-1523.
  15. Connor K.M., Quirie M.M., Baird G. et al. Characterization of united kingdom isolates of Corynebacterium pseudotuberculosis using pulsed-field gel electrophoresis. J. Clin. Microbiol. 2000, 38: 2633-2637.
  16. Funke G., Lawson P.A., Collins M.D. Corynebacterium riegelii sp. nov., an unusual species isolated from female patients with urinary tract infections. J. Clin. Microbiol. 1998, 36 (3): 624-627.
  17. Funke G., Von Graevenitz A., Clarridge J.E. et al. Clinical microbiology of corynefopm bacteria. Clin. Microbiol. Rev. 1997, 10 (1): 125-159.
  18. Hansmeier N., Chao T.C., Kalinowski J. et al. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics. 2006, 6: 2465-2476.
  19. Hodgson A.L.M., Carter K., Tachedjian M. et al. Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D.Vaccine. 1999, 17: 802-808.
  20. Kwaszewska A.K., Brewczynska A., Szewczyk E.M. Hydrophobicity and biofilm formation of lipophilic skin Corynebacteria. Polish. J. Microbiol. 2006, 55(3): 189-193.
  21. Mandlik A., Swierczynski A., DasA. et al. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 2007, 64: 111 -124.
  22. MandlikA., SwierczynskiA., DasA. etal. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008, 16 (1): 33-40.
  23. Marchand С. H., Salmeron C., Raad R.B. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J. Bacteriol. 2012, 194 (3): 587-597.
  24. Maximescu R, Oprisan A., Pop A. et al. Further studies on Corynebacterium species capable of producing diphtheria toxin (C. diphtheriae, C. ulcerans, C. ovis). Microbiology. 1974, 82 (1): 49-56.
  25. McKean S., Davies J., Moore R. Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology. 2007, 153 (7): 2203-2211.
  26. McKean S., Davies J., Moore R. Identification of macrophage induced genes of Corynebacterium pseudotuberculosis by differential fluorescence induction. Microbes Infect. 2005, 7: 1352-1363.
  27. Mishra A.K., Das A., Cisar J.O. Sortase catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol. 2007, 189: 3156-3165.
  28. Mishra A.K. , Krumbach K., Rittmann D. et al. Deletion of man C in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant. Microbiology. 2012, 158 (7): 1908-1917.
  29. Moreira L.D.O., Andrade A.F.B.,Vale M.D. et al. Effect of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl. Environ. Microbiol. 2003,69: 5907-5913.
  30. Nelson A., RiesJ., Bagnoli F. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 2007, 66: 329-340.
  31. Oliveira M., Barroco C., Mottola C. et al. First report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus).BMC Vet. Res. 2014,10:218.
  32. Olson M.E., Ceri H., Morck D.G. et al. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 2002, 66:86-92.
  33. Ott L., HollerM., Gerlach R. et al. Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiology. 2010, 10: 2.
  34. Puech V, Chami M.,Lemassu A. et al. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology. 2001, 147 (5): 1365-1382.
  35. Puliti M.,Von Hunolstein C., Marangi M. Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J. Med. Microbiol.2006, 55: 229-235.
  36. Reddy B.S., Chaudhury A., Kalawat U. et al. Isolation, speciation, and antibiogram of clinically relevant non-diphtherial Corynebacteria (Diphtheroids). Indian J. Med. Microbiology. 2012, 30(1): 52-57.
  37. Rogers E.A., Das A., Ton-That H. Adhesion by pathogenic corynebacteria. Adv. Exper. Med. Biol. 2011,715:91-103.
  38. Ruiz J.C., D’Afonseca V, Silva A. et al. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One. 2011,6: 8551.
  39. Sekizuka T., Yamamoto A., KomiyaT. et al. Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage.BMC Microbiology. 2012, 12: 72doi: 10.1186/1471-2180-12-72.
  40. Tsuge Y., Ogino H., Teramoto H. et al. Deletion of cgR_1596 and cgR_2070, encoding NlpC/ P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J. Bacteriol. 2008, 190: 8204-8214.
  41. Wagner J., Ignatius R.,Voss S. et al. Infection of the skin caused by Corynebacterium ulcerans and mimicking classical cutaneous diphtheria. Clin. Infect. Dis. 2001, 33 (9): 1598-1600.
  42. Yeruham L., Elad D., Friedman S. et al. Corynebacterium pseudotuberculosis infection in Israeli dairy cattle. J. Epidemiol. Infect. 2003, 131 (2): 947-955.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Харсеева Г.Г., Воронина Н.А., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах