GASTROINTESTINAL MICROBIOTA AND OBESITY. APPROVING PROBIOTICS AS DRUGS FOR TREATMENT OF OBESITY

Cover Page


Cite item

Full Text

Abstract

Once considered as a problem only in high income countries, overweight and obesity now rise in low- and middle-income countries, particularly in urban settings. This situation accelerates the development of different approaches to investigation of obesity, makes the medical community look for new approaches to investigation of the obesity. Human’s microbiome is an imprescriptible part of it. Nevertheless it’s energetic function wasn’t fully appraised. Microbiome takes part in shorty chain fatty acids metabolism. Bacterial cells provide over 70% of daily energy for enterocytes, it’s part in general metabolism takes over 10%. ScFA can change activity of adenosine monophosphate-dependent protein kinase, stimulate leptin synthesis. Microbiome regulates synthesis of glucagon-like peptide, which has contrinsular effect. Right composition of microbiome reduces non-specific inflammation, produces isomers of linoleic acid, which can cause reduction of inflammation too. This article appraises probiotics as drugs for treatment to obesity and eradication of some conditions that can arise during obesity (atherosclerosis, hypertension, depression).

About the authors

A. M. Karamzin

Sechenov First Moscow State Medical Universit

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

N. M. Tereshin

Sechenov First Moscow State Medical Universit

Email: noemail@neicon.ru
Russian Federation

References

  1. Ерофеев Н.П., Радченко В.Г., Селиверстов П.В. Клиническая физиология толстой кишки. Механизмы действия коротко-цепочечных жирных кислот в норме и при патологии. Монография. СПб, Форте Принт, 2012.
  2. Bergman Е. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews. 2009, 70: 567-590.
  3. den Besten G., Bleeker A., Gerding A. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARy-dependent switch from lipogenesis to fat oxidation. American Diabetes Association. Diabetes. 2015, 64 (7): 2398-2408.
  4. Bindels L.B., Neyrinck A.M., Salazar N. et al. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice. PLoS One. 2015,10(6): 1-16.
  5. Bloemen J.G., Venema K., van de Poll M.C. et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical Nutrition. 2009, 28 (6): 657-661.
  6. Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007, 56 (7): 1761-1772.
  7. Cani P.D., Bibiloni R., Knauf C. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008, 57 (6): 1470-1481.
  8. Cani P.D., Possemiers S. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009, 58:1091-1103.
  9. Chang P.V., Hao L., Offermanns S. et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS. 2014, 6: 2247-2252.
  10. Dahlqvist G., Piessevaux H. Irritable bowel syndrome: the role of the intestinal microbiota, pathogenesis and therapeutic targets. Acta Gastroenterologica Belgica. 2011, 74 (3): 75-80.
  11. Federico A., Dallio M., Tolone S. et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: Effect of bariatric surgery. In Vivo. 2016, 30(3):321-330.
  12. Gomes A.C., Bueno A.A., de Souza R.G. et al. Gut microbiota, probiotics and diabetes. Nutrition Journal. 2014, 13: 60:1-14.
  13. HangS., KokoevaM.V., Inouye K. etal. TLR4 links innate immunity and fatty acid-induced insulin resistance. Journal Clinical Investigation. 2006, 116 (11): 3015-3025.
  14. Hooper L.V., Midtvedt T., Gordon J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review Nutrition. 2002, 22: 283-307.
  15. Jordan K.W., Nordenstam J., Lauwers G.Y. et al. Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Diseases Colon Rectum. 2009, 52 (3): 520-525.
  16. Karlsson F.H., Fak E., Nookaew I. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications. 2012, 1245:1-8.
  17. Knowles S.E., Jarrett I.G., Filsell O.H. et al. Production and utilization of acetate in mammals. Biochemical Journal. 1974,142 (2): 401-411.
  18. Kuvaeva I.B., Orlova N.G., Veselova O.L. et al. Microecology of the gastrointestinal tract and the immunological status under food allergy. Die Nahrung. 1984, 28 (6-7): 689-693.
  19. Louis P., Young P., Holtrop G. et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:Acetate CoA-transferase gene. Environmental Microbiology. 2010,12 (2): 304-314.
  20. Louis P., Hold G.L., Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology. 2014,12:661-672.
  21. Maqsood R., Stone T.W. The gut-brain axis, BDNF, NMDA and CN S disorders. Neurochemical Research. 2016,41: 2819-2835.
  22. Mondot S., Kang S., Furet J.P. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflammatory Bowel Diseases. 2011, 17:185-192.
  23. Morris G., Berk M., Carvalho A.F. et al. The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimmune processes with an emphasis on inflammatory bowel disease type 1 diabetes and chronic fatigue syndrome. Current Pharmaceutical Design. 2016, 22 (22): 3303-3304.
  24. Natarajan N., Hori D., Flavahan S. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G-protein coupled receptor 41. Physiological Genomics Published. 2016,11: 826-834.
  25. Newgard C.B., An J., Bain J.R. et al. Abranched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism. 2009,9 (4): 311-326.
  26. Nishikawa J., Kudo T, Sakata S. et al. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scandinavian Journal Gastroenterology. 2009, 44 (2): 180-186.
  27. Reichardt N., Duncan S.H., Young P. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal. 2014, 8: 13231335.
  28. Ridaura V.K., Faith J.J., Rey F.E. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013, 341 (6150).
  29. Roediger W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982, 83 (2): 424-429.
  30. Terpstra A.H.M. Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. American Society for Clinical Nutrition. 2004, 3: 352361.
  31. Tian P., LiB., He CZ.et al. Antidiabetic (type 2)effects of Lactobacilius G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Function. 2016, 7:37893797.
  32. Wen L., Ley R.E.,Vokhkov P.Y. etal. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008,455 (7216): 1109-1113.
  33. Wichmann A., Allahyar A., Greiner T.U. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe. 2013, 14: 582-590.
  34. Yamashita H., Fujisawa K., Ito E. et al. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic otsuka long-evans tokushima fatty (OLETF) rats. Bioscience Biotechnology Biochemistry 2007,71 (5): 1236-1243.
  35. Zaibi M.S., Stooker C.J., O’Dowd J. et al. Roles oo GPR44 annGPR43 inn epeinrec(etofy responses of murine adipocytes to short chain fatty acids. FEBS Letters. 2010,584(11): 23812386.
  36. Ze X., Duncan S.H., Louis P. et al. Ruminocfccus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME Journal. 2012, 6:1535-1543.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Karamzin A.M., Tereshin N.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies