PRODUCTION OF 70 KDA RECOMBINANT HUMAN HEAT SHOCK PROTEIN IN BACULOVIRUS EXPRESSION SYSTEM AND ASSESSMENT OF ITS ANTIVIRAL ACTIVITY


Cite item

Full Text

Abstract

Aim. To obtain human recombinant 70kDa heat shock protein (Hsp70) in baculovirus expression system and to study its antiviral activity. Materials and methods. Baculovirus expression system was used to obtain recombinant HSP70. Plasmid pFastBacHTb-Hsp70 containing sequence coding HSP70 gene with insertion of 6 histidine residues in protein reading frame was constructed. Competent cells MAX Efficiency DH 10 Bac were transfected with pFastBacHTb-Hsp70 plasmid with following extraction of recombinant bacmid Bac-Hsp70. In order to obtain baculovirus expressing HSP70, Sf-9 cells were transfected with Bac-Hsp70 bacmid. Hsp70 extraction and purification was performed with column metal-chelating affinity chromatography using Ni 2+ ions. Protective efficacy of recombinant human HSP70 was estimated using model of Venezuelan equine encephalitis (VEE) in mice. Results. Recombinant bacmid Bac-Hsp70 was constructed based on Bac-to-Bac expression system. Baculovirus expressing human HSP70 have been produced after transfection of Sf-9 cells with Bac-Hsp70 bacmid. Cultivation of recombinant baculovirus in Sf-9 cells and application of metal-chelating affinity chromatography allowed to extract purified fraction of HSP70. Experiments on mice infected with VEE virus demonstrated significant protection from death after administration of HSP70 in dose 15 mcg/mice. Conclusion. Application of baculovirus expression system and insect cell line for accumulation of recombinant baculoviruses in combination with Ni 2+-mediated metal-chelating affinity chromatography allowed to obtain highly purified human recombinant HSP70 with marked antiviral activity.

Full Text

ПОЛУЧЕНИЕ РЕКОМБИНАНТНОГО БЕЛКА ТЕПЛОВОГО ШОКА 70 КДА ЧЕЛОВЕКА В БАКУЛОВИРУСНОЙ СИСТЕМЕ ЭКСПРЕССИИ И ОЦЕНКА ЕГО ПРОТИВОВИРУСНОЙ АКТИВНОСТИ
×

About the authors

V. A Merkulov

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

T. M Plekhanova

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

A. Yu Zverev

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

V. L Karpov

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

M. B Evgenyev

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

O. N Kadykova

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

E. V Gordeev

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

A. A Petrov

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

A. L Kovtun

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

A. A Makhlai

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

A. N Mironov

Branch of 48th Central Research Institute of Ministry of Defense of Russian Federation — Center of Virology, Sergiev Posad; Engelgart Institute of Molecular Biology, Moscow, Russia

References

  1. Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. Л., 1962.
  2. Гужова И.В. Механизмы работы шаперона Hsp70 в нормальных клетках и при клеточной патологии. Автореф. дис. д-ра биол. наук. СПб, 2004.
  3. Пастухов Ю.Ф., Екимова И.В. Молекулярные, клеточные и системные механизмы протективной функции белка теплового шока 70 кДа. Мол. клет. нейробиол. 2005, 2: 3-25.
  4. Махлай А.А., Ковтун А.Л., Марков В.И. и др. Способ биопротекции, основанный на использовании препарата БТШ70, предназначенный для создания средств и методов неспецифической защиты от опасных биологических поражающих факторов. Патент РФ № 2263144, зарег. в ГРИ РФ 27.10.05 г.
  5. Пшеничнов В.А., Семенов Б.Ф., Зезеров Е.Г. Стандартизация методов вирусологических исследований. М., Медицина, 1974.
  6. Шевчик Ю.С., Курбатова Е.А., Свешников П.Г. и др. Рекомбинантный белок теплового шока (rHSP70) усиливает активацию врожденного и адаптивного иммунитета при совместном введении с бактериальными антигенами в эксперименте. Журн. микробиол. 2009, 1: 42-46.
  7. Asea A. Mechanisms of HSP72 release. J. Biosci. 2007, 32: 579-584.
  8. Giffard R.G., Xu L., Zhao H. et al. Chaperons, protein aggregation, and brain protection from hypoxic/ischemic injury. J. Exper. Biol. 2004, 207: 3213-3220.
  9. Hauser H., Shen L., Gu Q.L. et al. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther. 2004, 11 (11): 924-932.
  10. Hochuli E., Dobeli H., Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatography. 1987, 411: 177-184.
  11. Langereis M.A., Rosas-Acosta G., Mulder K., Wilson Van G. Production of sumoylated proteins using a baculovirus expression system. J. Virol. Meth. 2007, 139 (2): 189-194.
  12. McCall E.G., Danielsson A., Ian M. Hardern I.M. et al. Improvements to the throughput of recombinant protein expression in the baculovirus/insect cell system. Protein Expres. Pur. 2005, 42: 29-36.
  13. Rokutan K. Molecular chaperone inducers in medicine and diseases. Nippon Yakurigaku Zassi. 2003, 121 (1): 15-20.
  14. Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. 2002, 2: 185-194.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Merkulov V.A., Plekhanova T.M., Zverev A.Y., Karpov V.L., Evgenyev M.B., Kadykova O.N., Gordeev E.V., Petrov A.A., Kovtun A.L., Makhlai A.A., Mironov A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies