ROLE OF PHYSICO-CHEMICAL AND BIOLOGICAL IMPACTS IN FORMATION OF TOLERABILITY OF BACTERIA CONTAMINATING FOOD PRODUCTS
- Authors: Efimochkina N.R1
-
Affiliations:
- Research Institute of Nutrition, Moscow, Russia
- Issue: Vol 86, No 4 (2009)
- Pages: 120-125
- Section: Articles
- Submitted: 09.06.2023
- Published: 15.08.2009
- URL: https://microbiol.crie.ru/jour/article/view/13458
- ID: 13458
Cite item
Full Text
Abstract
Role of effects of technological factors on microflora of food products during process of their manufacture is discussed. Influence of physical, chemical and biological stress actions on formation of several types of tolerability of bacteria contaminating food products is presented. Regulatory mechanisms of response reactions of microorganisms on adverse actions, patterns of behavior of pathogenic bacteria in stress circumstances, relationship between induced stress tolerability and level of expression of virulent characteristics of microorganisms are discussed. Necessity to study stress responses by discovering full genetic and proteomic profiles of pathogenic bacteria is substantiated.
Keywords
Full Text
РОЛЬ ФИЗИКО-ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ВОЗДЕЙСТВИЙ В ФОРМИРОВАНИИ ТОЛЕРАНТНОСТИ БАКТЕРИЙ, КОНТАМИНИРУЮЩИХ ПИЩЕВЫЕ ПРОДУКТЫ×
References
- Бондаренко В.М. Общий анализ представлений о патогенных и условно-патогенных бактериях. Журн. микробиол. 1997, 4: 20-26.
- Гинцбург А.Л., Романова Ю.М. Генетические механизмы выживания патогенных бактерий в условиях голодания. В: Эпидемиологические аспекты экологии бактерий. М., Фармарус-Принт, 1997.
- Романова Ю.М., Алексеева Н.В., Гинцбург А.Л. Некультивируемое состояние у патогенных бактерий на модели Salmonella typhimurium: феномен и генетический контроль. Журн. микробиол. 1997, 4:35-41.
- Тартаковский И.С., Малеев В.В., Ермолаева С.А. Листерии: роль в инфекционной патологии человека и лабораторная диагностика. М., Медицина для всех., 2002.
- Шевелева С.А., Ефимочкина Н.Р., Иванов А.А. и др. Пищевые отравления и инфекции в Российской Федерации за период 1992-2001 гг.: состояние проблемы и тенденции. Гиг. сан. 2003, 3: 38- 45.
- Bassler B.L. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 1999, 2: 582-587.
- Bozarias I.S., Adams I.R. Temperature shock, injury and transient sensitivity to nisin in Gram-negatives. J. Appl. Microbiol. 2001, 91: 715-724.
- Csonka L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 1989, 53 (1): 121-147.
- Gurtler J.B., Kornacki J.L., Beuchat L.R. Enterobacter sakazakii: a coliform of increased concern to infant health. Int. J. Food Microbiol. 2005, 104 (1): 1-34.
- Hicks S.J., Rowbury R.J. Resistance of attached Escherichia coli to acrylic acid and its significance for the survival of plasmid-bearing organisms in water. Ann. Inst. Pasteur. 1987, 138: 359-369.
- Humphrey T. Salmonella typhimurium definitive type (DT) 104. A multi-resistant Salmonella. Int. J. Food Microbiol. 2001, 67 (3): 246-251.
- Humphrey T., O’Brien S., Madsen M. Campylobacters as zoonotic pathogens: A food production perspective. Ibid. 2007, 117 (3): 237-257.
- Humphrey T.J., Richardson N.P., Statton K.M. et al. Effects of temperature shifts on acid and heat tolerance in Salmonella enteritidis phage type 4. Appl. Environ. Microbiol. 1993, 59: 3120-3122.
- Humphrey T.J., Slater E., McAlpine K. et al. Salmonella enteritidis phage type 4 isolates more tolerant of heat, acid or hydrogen peroxide also survive longer on surfaces. Ibid. 1995, 61: 3161-3164.
- Humphrey T.J., Williams A., McAlpine K. et al. Isolates of Salmonella enterica serovar Enteritidis PT 4 with enhanced heat and acid tolerance are more virulent in mice and more invasive in chickens. Epidemiol. Infect. 1996, 117: 79-88.
- Ji G., Beavis R.C., Novick R.P. Cell density control of staphylococcus virulence by an octapeptide pheromone. Proc. Nat. Acad. Sci. 1995, 92: 12055-12059.
- Kitagawa M., Matsumara Y., Tsuchido N. Small heat — shock proteins, IbpA and IbpB, are involved in rsistances to heat and O2-stress in Escherichia coli. FEMS Microbiol. Lett. 2000, 184: 1865-1871.
- Kwon Y.M., Ricke S.C. Induction of acid resistance of Salmonella typhimurium by exposure to short chain fatty acids. Appl. Environ. Microbiol. 1998, 64: 3458-3463.
- Li C., Tao Y.P., Simon L.D. Expression of different size transcripts from clpP-clpX operon of Escherichia coli during carbon deprivation. J. Bacteriol. 2000, 182: 6630-6637.
- Mattick K.L., Jorgensen F., Legan J.D. et al. The sur- vival and filamentation of Salmonella enterica serovar Enteritidis PT 4 and Salmonella enterica serovar Typhimurium DT 194 at low water activity. Appl. Environ. Microbiol. 2000, 66: 1274-1279.
- Paoli G.C., Bhunia A.K., Bayles D.O. Listeria mono- cytogenes. In: Foodborne pathogens. Microbiology and molecular biology. Wymondham, UK, 2005, p.295-325.
- Raja N., Goodson M., Smith D.G. et al. Decreased DNA damage and increased repair of acid-damaged DNA in acid-habitated Escherichia coli. J. Appl. Bacteriol., 1991, 70: 507-511.
- Rangel J.M., Sparling P.H., Crowe C. et al. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 2005, 11 (4): 112-119.
- Rowbury R.J. Stress responses of foodborne pathogens with specific reference to the switching on of such responces. In: Foodborne pathogens. Microbiology and molecular biology. Wymondham, UK, 2005, p.77-97.
- Salmond C.V., Kroll R.G., Booth I.R. The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 1984, 130: 2845-2850.
- Tauxe R.W. Emerging foodborne pathogens. Int.J. Food Microbiol. 2002, 7 (1—2): 31-41.
- Walker G.C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 1984, 48: 60-93.
- Weber M.H.W., Marahiel M.A. Bacterial cold shock responses. Sci. Prog. 2003, 86: 9-75.
- Whiting G.C., Rowbury R.J. Increased resistance of Escherichia coli to acrylic acid and to copper ions after cold-shock. Lett. Appl. Microbiol. 1995, 20: 240-242.