NOVEL APPROACH TO COMPOSITION OF BACTERIOPHAGE MIXTURES FOR ANTIBACTERIAL THERAPY

Cover Page

Cite item

Full Text

Abstract

Aim. Evaluate antibacterial activity of an experimental mixture of phages, belonging to several well-studied species. Materials and methods. The study was carried out using a group of 55 clinical Pseudomonas aeruginosa strains of various origins, 4 mono-species mixtures of 32 virulent bacteriophages (species phiKZ-, phiKMV-, phiPBl-, РаРЗ-like phages) and 2 novel phages, phiMK (species PaK-P2) and phiPerm5. Activity of preparations from mono-species mixtures of bacteriophages of various species were compared with activity of 3 commercial mixtures. Standard methods of study of bacteriophages were used: determination of lytic activity by seeding onto bacterial lawns of P. aeruginosa, restriction analysis of phage DNA for confirmation of their belonging to certain species. Results. Cumulative activity of 6 mono-species mixtures of virulent phages was shown to be similar to lytic activity of commercial therapeutic mixtures used against P. aeruginosa infections. 54 of 55 strains of clinical isolates of P. aeruginosa showed sensitivity to experimental mixtures composed of mono-species mixtures of bacteriophages. 53 strains were lysed by commercial preparations. Wherein the possibility of accidental inclusion of moderate bacteriophages in the experimental mixture is excluded. Conclusion. A possibility of creation of highly active therapeutic antibacterial preparations against P. aeruginosa using mono-species mixtures of 6 species of lytic bacteriophages is shown. Use of such a mixture in therapy of lung infections reduces the risk of emergence of bacterial strains with increased virulence and pathogenicity during prolonged administration.

About the authors

E. A. Pleteneva

Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

O. V. Shaburova

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

M. V. Burkaltseva

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

S. V. Krylov

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

A. M. Kaplan

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

E. N. Chesnokova

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

O. A. Polygach

Mechnikov Research Institute of Vaccines and Sera; Branch of SPO «Microgen»

Email: noemail@neicon.ru
Russian Federation

N. N. Voroshilova

Branch of SPO «Microgen»

Email: noemail@neicon.ru
Russian Federation

N. A. Mikhailova

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

V. V. Zverev

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

V. N. Krylov

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

References

  1. Плетенева Е.А., Буркальцева М.В., Шабурова О.В., Крылов С.В., Печникова Е.В., Соколова О.С., Крылов В.Н. Новый бактериофаг TL Pseudomonas aeruginosa и его использование для поиска фагов, образующих ореолы. Генетика. 2011, 47 (1): 5-9.
  2. Плетенева Е.А., Крылов С.В., Шабурова О.В., Буркальцева М.В., Мирошников К.А. Крылов В.Н. Псевдолизогения бактерий Pseudomonas aeruginosa, инфицированных phiKZ-подобными бактериофагами. Генетика. 2010, 46 (1): 26-32.
  3. Плетенева Е.А., Шабурова О.В., Сыкилинда Н.Н., Мирошников К.А., Кадыков В.А., Крылов С.В., Месянжинов В.В., Крылов В.Н. Изучение разнообразия в группе фагов вида РВ1 (Myoviridae) Pseudomonas aeruginosa и их поведения на адсорбционноустойчивых мутантах бактерий. Генетика. 2008, 44 (2): 185-194.
  4. Barry P.J., Jones A.M. New and emerging treatments for cystic fibrosis. Drugs. 2015, 75(11): 1165-75. doi: 10.1007/s40265-015-0424-8.
  5. Chanishvili N. Phage therapy - history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus. Res. 2012, 83: 3-40.
  6. Ceyssens P.J., Minakhin L., Van den Bossche A. et al. Development of giant bacteriophage tpKZ is independent of the host transcription apparatus. J Virol. 2014, 88 (18): 10501-10510.
  7. Fothergill J.L., Walshaw M.J., Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur. Resp. J. 2012, 40: 227-238.
  8. Fernandez L., Gooderham W.J., Bains M. et al. Adaptive resistance to the «last hope» antibiotics polymyxin В and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob. Agents Chemother. 2010, 54 (8): 3372-3382.
  9. Henry M., Lavigne R., Debarbieux L. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob. Agents Chemother. 2013, 57 (12): 5961-5968.
  10. James C.E., Fothergill J.L., Kalwij H. et al. Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol. 2012, 21 (12): 216. doi: 10.1186/1471-2180-12-21.
  11. Krylov V, Shaburova O., Pleteneva E. et al. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol. Sin. 2015, 30 (1): 33-44.
  12. Lee J.Y., Chung E.S., Nal.Y. etal. Development of colistin resistance inpmrA-, phoP-,parR-and cprR-inactivated mutants of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2014, Jul 2. pii: dku238.
  13. Liu Y.Y., Wang Y., Walsh T.R. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 2015, Nov 18. pii: S 1473-3099( 15)00424-7. doi: 10.1016/ SI 473-3099(15)00424-7.
  14. Lavigne R., Burkaltseva M.V., Robben J. et al. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology. 2003, 312 (1): 49-59.
  15. Magill D.J., Shaburova O.V., Chesnokova E.N. et al. Complete nucleotide sequence of phi-CHU: a Luz241ikevirus infecting Pseudomonas aeruginosa and displaying a unique host range. FEMS Microbiol. Lett. 2015, 362 (9). pii: fnv045. doi: 10.1093/femsle/fnv045. Epub. 2015 Mar 30.
  16. Winstanley C., Langille M.G., Fothergill J.L. etal. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res. 2009, 19 (1): 12-23.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleteneva E.A., Shaburova O.V., Burkaltseva M.V., Krylov S.V., Kaplan A.M., Chesnokova E.N., Polygach O.A., Voroshilova N.N., Mikhailova N.A., Zverev V.V., Krylov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies