PROTEINS AND OTHER CARRIERS FOR CREATION OF CONJUGATED VACCINES: PROPERTIES AND APPLICATION

Cover Page


Cite item

Full Text

Abstract

Vaccination is a key element in prophylaxis of infectious diseases. Effective vaccines based on polysaccharide capsules were developed for a number of microorganisms. Effectiveness of polysaccharides as antigens, however, is low in the main risk groups - infants and patients with immunedeficiency conditions. Use of polysaccharide antigens conjugated with protein carriers as vaccines became a principal step forward. Though use of carriers became a breakthrough for vaccine effectiveness increase, mechanisms of interaction of proteins and carbohydrate components of the vaccines in T-cell immune response induction and immunological memory remains studied incompletely. Lack of theoretical base complicates execution of directed engineering of conjugated vaccines with the goal of expansion of their nomenclature and effectiveness increase. Despite significant volume of new information in the field of interaction of various antigens, and significant expansion of spectrum of potential carriers, including of non-protein nature, the number of pathogens, for which conjugated vaccines are introduced into clinical practice, remains insignificant. Information regarding problems and perspectives of use of carriers for conjugated polysaccharide vaccines is summarized in the review.

About the authors

L. A. Lisitskaya

State Scientific Centre of Applied Microbiology and Biotechnology

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

A. V. Kolesnikov

State Scientific Centre of Applied Microbiology and Biotechnology; institute of Engineering Immunology

Email: noemail@neicon.ru
Russian Federation

A. V. Kozyr

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

I. G. Shemyakin

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

A. K. Ryabko

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

O. N. Krasavtseva

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

LA. .. Dyatlov

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

References

  1. Колесников А.В., Козырь А.В., Шемякин И.Г., Дятлов И.А. Современные представления о механизме активации иммунного ответа конъюгированными полисахаридными вакцинами. Журн. микробиол. 2015, 3: 97-106.
  2. Adamo R., Nilo A., Castagner В. et al. Synthetically defined glycoprotein vaccines: current status and future directions. Chem. Sci. 2013, 4 (8): 2995-3008.
  3. Andrade G.R., New R.R., SanfAnna O.A. et al. A universal polysaccharide conjugated vaccine against Oil 1 E. coli. Hum. Vaccin Immunother. 2014, 10 (10): 2864-2874.
  4. Ashton A. C., Li Y., Doussau E et al. Tetanus toxin inhibits neuroexocytosis even when its Zn(2+)-dependent protease activity is removed. Biol. Chem. 1995, 270 (52): 31386-31390.
  5. Astronomo R.D., Burton D.R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug. Discov. 2010, 9 (4): 308-324.
  6. Avci F.Y. Novel strategies for development of next-generation glycoconjugate vaccines. Curr. Top. Med. Chem. 2013, 13(20): 2535-2540.
  7. Avery О. T., Goebel W. F. Chemo-immunological studies on conjugated carbohydrate-proteins: Immunological specificity of synthetic sugar-protein antigens. J. Exp. Med. 1929, 50 (4): 533-550.
  8. Bargieri D. Y., Rosa D. S., Braga C.J.M. et al. New malaria vaccine candidates based on the plasmodium vivax merozoite surface protein-1 and the TLR-5 agonist Salmonella typhimu-rium FliC flagellin. Vaccine. 2008, 26: 6132-6142.
  9. Bates J.T., Graff A.H., Phipps J.Retal. Enhanced antigen processing offlagellin fusion proteins promotes the antigen-specific CD8+ T cell response independently of TLR5 and MyD88. J. Immunol. 2011, 186(11): 6255-6262.
  10. Berti F., Adamo R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. 2013, 8(8): 1653-1663.
  11. Blanchard-Rohner G., Pollard A. J. Long-term protection after immunization with protein-polysaccharide conjugate vaccines in infancy. Expert. Rev. Vaccines. 2011, 10 (5): 673-684.
  12. Broker M., Costantino P, DeTora L. et al. Biochemical and biological characteristics of crossreacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals. 2011, 39 (4): 195-204.
  13. Chu C., Schneerson R., Robbins J. B. et al. Further studies on the immunogenicity of Haemophilus influenzae type b and pneumococcal type 6A polysaccharide-protein conjugates. Infect. Immun. 1983, 40 (1): 245-256.
  14. Cohen D., Ashkenazi S., Green M.S. et al. Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet. 1997, 349 (9046): 155-159.
  15. Cryz S.J., Jr., Sadoff J. C., Furer E. Octavalent Pseudomonas aeruginosa O-polysaccharide-toxin A conjugate vaccine. Microb. Pathog. 1989, 6 (1): 75-80.
  16. Defrance T., Taillardet M., Genestier L. T cell-independent В cell memory. Curr. Opin. Immunol. 2011, 23 (3): 330-336.
  17. Del Giudice G. New carriers and adjuvants in the development of vaccines. Curr. Opin. Immunol. 1992, 4 (4): 454-459.
  18. Gallorini S., Berti F., Parente P. et al. Introduction of zwitterionic motifs into bacterial polysaccharides generates TLR2 agonists able to activate APCs. J. Immunol. 2007, 179 (12): 8208-8215.
  19. Goldblatt D. Recent developments in bacterial conjugate vaccines. J. Med. Microbiol. 1998, 47 (7): 563-567.
  20. Grayson E. J., Bemardes G. J. L., Chalker J. M. et al. A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates. Angew. Chem. Inti. Ed. 2011, 50: 4127-4132.
  21. Guo Z., Wang Q. Recent development in carbohydrate-based cancer vaccines. Curr. Opin. Chem. Biol. 2009, 13 (5-6): 608-617.
  22. JeurissenA., Bossuyt X. T cell-dependent and-independent responses. J. Immunol. 2004,172 (5): 2728.
  23. Kalka-Moll W.M., Tzianabos A.O., Bryant P.W. et al. Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J. Immunol. 2002, 169 (11): 6149-6153.
  24. KnufM., KowalzikF., KieningerD. Comparative effects of carrier proteins on vaccine-induced immune response. Vaccine. 2011, 29: 4881-4890.
  25. Landsteiner K. The specificity of serologic reactions. Cambridge, MA: Harvard University Press, 1936.
  26. Lee C. J., Lee L. H., Lu C. S., Wu A. Bacterial polysaccharides as vaccines - immunity and chemical characterization. Adv. Exp. Med. Biol. 2001, 491: 453-471.
  27. Leonard E. G., Canaday D. H., Harding С. V. et. al. Antigen processing of the heptavalent pneumococcal conjugate vaccine carrier protein CRM 197 differs depending on the serotype of the attached polysaccharide. Infect. Immunity. 2003, 71 (7): 4186-4189.
  28. Lesinski G. B., Westerink M. A. Novel vaccine strategies to T-independent antigens. J. Microbiol. Methods. 2001, 47 (2): 135-149.
  29. Lukac M., Pier G.B., Collier R.J. Toxoid of Pseudomonas aeruginosa exotoxin A generated by deletion of an active-site residue. Infect. Immun. 1988, 56 (12): 3095-3098.
  30. Malito E., Bursulaya B., Chen C. et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. PNAS. 2012, 109 (14): 5229-5234.
  31. McCool T. L., Harding С. V, Greenspan N. S., Schreiber J. R. B- and T-cell immune responses to pneumococcal conjugate vaccines: divergence between carrier- and polysaccharide-specific immunogenicity. Infect. Immun. 1999, 67 (9): 4862-4869.
  32. Mitamura T., Higashiyama S., Taniguchi N. et al. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diph-theria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem. 1995, 270 (3): 1015-1019.
  33. Mizel S.B., Bates J.T. Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol. 2010, 185 (10): 5677-5682. '34. Muthukkumar S., Stein К. E. Immunization with meningococcal polysaccharide-tetanus toxoid conjugate induces polysaccharide-reactive T cells in mice. Vaccine. 2004, 22 (9-10): 1290-1299.
  34. Olvera-Gomeza I., Hamiltona S.E., Xiaoa Z. et al. Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. PNAS. 2012, 109 (6): 2072-2077.
  35. Patent EP 2533805 Al, 19.12.2012. Caulfield M.J., Ahl P.L., Blue J.T., Cannon J.L. 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition. Patent USA, EP20110742633, 2011.
  36. Pollard A. J., Perrett К. P, Beverley P. C. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 2009, 9 (3): 213-220.
  37. Pichichero M. E. Protein carriers of conjugate vaccines. Human Vaccines Immunotherapeutics. 2013,9(12): 2505-2523.
  38. Pier G. B. Is Pseudomonas aeruginosa exotoxin A a good carrier protein for conjugate vaccines? Human Vaccines. 2007, 3 (2): 39-40.
  39. Pobre K., Tashani M., Ridda I. et al. Carrier priming or suppression: understanding carrier priming enhancement of anti-polysaccharide antibody response to conjugate vaccines. Vaccine. 2014, 32 (13): 1423-1430.
  40. Romano M.R., Leuzzi R., Cappelletti E. et al. Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins (Basel). 2014, 6 (4): 1385-1396.
  41. Shapiro E. D. New vaccines against Haemophilus influenzae type b. Pediatr. Clin. North. Am. 1990, 37 (3): 567-583.
  42. Simon R., Wang J.Y., Boyd M.A. et al. Sustained protection in mice immunized with fractional doses of Salmonella enteritidis core and О polysaccharide-flagellin glycoconjugates. PLoS One. 2013, 8 (5): e64680.
  43. Stefan A., Conti M., Rubboli D. et al. Overexpression and purification of the recombinant diphtheria toxin variant CRM197 in Escherichia coli. J. Biotechnology. 2010, 156: 245- 252.
  44. Szu S.C., Ahmed A. Clinical studies of Escherichia coli 0157:H7 conjugate vaccines in adults and young children. Microbiol. Spectr. 2014, 2 (6): 1-7.
  45. Taillardet M., Haffar G., Mondiere Pet al. The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood. 2009,114 (20): 4432-4440.
  46. Uchida T., Gill D. M., Pappenheimer A. M. Mutation in the structural gene for diphtheria toxin carried by temperate phage p. Nature New Biology 1971, 233: 8-11.
  47. Verez-Bencomo V, Fernandez-Santana V, Hardy E. et al. Asynthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science. 2004, 305 (5683): 522-525.
  48. Wang Q., Zhou Z., Tang S. et al. Carbohydrate-monophosphoryl lipid a conjugates are fully synthetic self-adjuvanting cancer vaccines eliciting robust immune responses in the mouse. ACS Chem. Biol. 2012, 7 (1): 235-240.
  49. Wiedinger K., Romlein H., Bitsaktsis C. Cholera toxin В induced activation of murine macrophages exposed to a fixed bacterial immunogen. Ther. Adv. Vaccines. 2015,3 (5-6): 155-163.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Lisitskaya L.A., Kolesnikov A.V., Kozyr A.V., Shemyakin I.G., Ryabko A.K., Krasavtseva O.N., Dyatlov L...

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies