SYNTHETIC BIOLOGY AS AN INSTRUMENT FOR DEVELOPMENT OF INNOVATIVE VACCINES FOR PROPHYLAXIS OF BACTERIAL INFECTIONS

Cover Page


Cite item

Full Text

Abstract

For many decades, live vaccines remain the most effective means for prophylaxis of bacterial infections. Until recently, the main source of vaccine strains were empirically selected bacteria, virulence of which was attenuated due to natural mutations. Despite effectiveness of such vaccines against a number of infections, use of attenuated strains for many pathogens either does not induce sufficient protection, or is unsafe. Traditional technologies of vaccine creation frequently have low effectiveness with the lack of pronounced «protective» antigens in the pathogen. Methods of rational construction of live vaccines have received development in the recent years, based on methodology of synthetic biology. Contribution of synthetic biology into creation of vaccines is not limited to use of means of bioinformatics and construction of optimized DNA fragments, but also includes coordinated adjustments to various components of the bacterial genome, creation of vector strains, inclusion of altered immunogens and immune system activators into them, search and design of immunogens in silico and much more. Methodologies of synthetic biology allow to combine various engineering ideas and building blocks, obtained during creation and modification of various prophylaxis, therapeutic and bioengineering systems for production of microorganisms with qualitatively novel and programmable properties, and in perspective - rapidly create vaccines «on demand».

About the authors

A. V. Kolesnikov

State Scientific Centre of Applied Microbiology and Biotechnology; Institute of Engineering Immunology

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

A. V. Kozyr

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

L. G. Shemyakin

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

LA. .. Lisitskaya

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

M. A. Marin

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

A. K. Ryabko

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

LA. .. Dyatlov

State Scientific Centre of Applied Microbiology and Biotechnology

Email: noemail@neicon.ru
Russian Federation

References

  1. Bai X., Borrow R. Genetic shifts of Neisseria meningitidis serogroup В antigens and the quest for a broadly cross-protective vaccine. Expert. Rev. Vaccines. 2010, 9(10): 1203-1217.
  2. Bambini S., Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov. Today. 2009, 14: 252-260.
  3. Barat S., Wilier Y., Rizos K. et al. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoSPathog. 2012, 8(10):el002966. doi: 10.1371/journal. ppat. 1002966.
  4. Bolhassani A., Zahedifard F. Therapeutic live vaccines as a potential anticancer strategy. Int. J. Cancer. 2012, 131 (8): 1733-1743.
  5. Carleton H.A. Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J. Biol. Med. 2010, 83 (4): 217-222.
  6. Cheng A.A., LuT.K. Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 2012, 14: 155-178.
  7. Cremers A.J., Mobegi F.M., de Jonge M.I. et al. The post-vaccine microevolution of invasive Streptococcus pneumoniae. Sci. Rep. 2015, 5: 14952.
  8. Coleman J.R., Papamichail D., Yano M. et al. Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J. Infect. Dis. 2011,203 (9): 1264-1273.
  9. Dastgheyb S.S., Otto M. Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol. 2015, 10: 1981-1995.
  10. De Groot A.S., Einck L., Moise L. et al. Making vaccines «on demand»: a potential solution for emerging pathogens and biodefense? Hum. Vaccin. Immunother. 2013, 9 (9): 1877-1884.
  11. D'Elia R.V., Harrison К., Oyston P. C. et al. Targeting the «cytokine storm» for the rapeutic benefit. Clin. Vaccine Immunol. 2013, 20 (3): 319-327.
  12. Del Tordello E., Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct. Genomics. 2013, 12 (4): 328-340.
  13. Editorial. Synthetic Biology: What's in a name? Nature Biotechnology. 2009, 27 (12): 1071-1073.
  14. Editorial. Unbottling the genes. Nature Biotechnology. 2009, 27 (12): 1059.
  15. Endy D. Foundations for engineering biology. Nature. 2005, 438 (7067): 449-453.
  16. Figueira R., Watson K.G., Holden D.W. et al. Identification of Salmonella pathogenicity is land-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. MBio. 2013, 4 (2): e00065. ч
  17. Finne J., Bitter-Suermann D., Goridis C. et al. An IgG monoclonal antibody to group В meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J. Immunol. 1987, 138: 4402-4407.
  18. Galen J.E., Curtiss R. The delicate balance in genetically engineering live vaccines. Vaccine. 2014, 32 (35): 4376-4385.
  19. Gould N., Hendy O., Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front. Bioeng. Biotechnol. 2014, 2: 41.
  20. Gutman G.A., Hatfield G. W. Nonrandom utilization of codon pairs in Escherichia coli. Proc. Nat. Acad. Sci. USA. 1989, 86, (10): 3699-3703.
  21. Homer M., Reischmann N., Weber W. Synthetic biology: programming cells for biomedical applications. Perspect. Biol. Med. 2012, 55 (4): 490-502.
  22. Jefferies J.M. C., Johnston C.H. G., Kirkham L-A.S. et al. Presence of nonhemolytic pneumolysin in serotypes of Streptococcus pneumoniae associated with disease outbreaks. J. Infect. Dis. 2007, 196 (6): 936-944.
  23. Kindsmiiller K., Wagner R. Synthetic biology: impact on the design of innovative vaccines. Hum. Vaccin. 2011, 7 (6): 658-662.
  24. Kleber-Janke T, Becker W. M. Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr. Purif. 2000, 19(3): 419-424.
  25. Liljeroos L., Malito E., Ferlenghi I. et al. Structural and computational biology in the design of immunogenic vaccine antigens. J. Immunol. Res. 2015, 4: 1-17.
  26. Liss V, Hensel M. Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica. Cell Microbiol. 2015, 17 (5): 639-647.
  27. Liu Y., Shin H.D., Li J. et al. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects. Appl. Microbiol. Biotechnol. 2015, 99 (3): 1109-1118.
  28. Morgan-Kiss R.M., Wadler C., Cronan J. E. et al. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Nat. Acad. Sci. USA. 2002, 99 (11): 7373-7377.
  29. Neyen C., Lemaitre B. Sensing Gram-negative bacteria: a phylogenetic perspective. Curr. Opin. Immunol. 2015, 38: 8-17.
  30. Pascual D.W., Suo Z., Cao L. et al. Attenuating gene expression (AGE) for vaccine development. Virulence. 2013, 4 (5): 384-390.
  31. Powell D.A., Roberts L.M., Ledvina H.E. et al. Distinct innate responses are induced by attenuated Salmonella enterica serovar Typhimurium mutants. Cell Immunol. 2016, 299: 42-49.
  32. Reiss T. Synthetic Biology. FEBS Lett. 2012, 586 (15): 2027-2028.
  33. Rollier C.S., Dold C., Marsay L. et al. The capsular group В meningococcal vaccine, 4CMenB: clinical experience and potential efficacy. Expert. Opin. Biol. Ther. 2015, 15 (1): 131-142.
  34. Rinaudo C.D., Telford J.L., Rappuoli R. et al. Vaccinology in the genome era. J. Clin. Invest. 2009, 119 (9): 2515-2525.
  35. Ruchaud-Sparagano M.H., Mills R., Scott J. et al. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing. Immunol. Cell. Biol. 2014, 92 (9): 799-809.
  36. Runco L.M., Stauft C.B., Coleman J.R. Tailoring the immune response via customization of pathogen gene expression. J. Pathog. 2014: 1-7.
  37. Serruto D., Bottomley M.J., Ram S. et al. The new multicomponent vaccine against meningococcal serogroup В, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine. 2012, 30 (2): 87-97.
  38. Shahabi V., Maciag P.C., Rivera S. et al. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng. Bugs. 2010, 1 (4): 235-243.
  39. Shima H., Watanabe X, Fukuda S. et al. A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses. Int. Immunol. 2014, 26 (11): 619-625.
  40. Slusarczyk A.L., Lin A., Weiss R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 2012, 13 (6): 406-420.
  41. Steinhagen F., KinjoT., Bode C. et al. TLR-based immune adjuvants. Vaccine. 2011, 29 (17): 3341-3355.
  42. Szybalski W., SkalkaA. Nobel prizes and restriction enzymes. Gene. 1978, 4: 181-182.
  43. Tacket C.O., Losonsky G., Nataro J.P. et al. Safety and immunogenicity of live oral cholera vaccine candidate CVD 110, a delta ctxA delta zot delta ace derivative of El Tor Ogawa Vibrio cholera. J. Infect. Dis. 1993, 168 (6): 1536-1540.
  44. Tarahomjoo S. Development of vaccine delivery vehicles based on lactic acid bacteria. Mol. Biotechnol. 2012, 51 (2): 183-199.
  45. Van Blokland H.J., Kwaks T.H., Sewalt R.G. et al. A novel, high stringency selection system allows screening of few clones for high protein expression. J. Biotechnol. 2007, 128 (2): 237-245.
  46. Wang S., Kong Q., Curtiss R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb. Pathog. 2013, 58: 17-28.
  47. Weber W., Fussenegger M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 2011,13 (1): 21-35.
  48. WyszynskaA., Kobierecka R, Bardowski J. et al. Lactic acid bacteria - 20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 2015, 99 (7): 2967-2977.
  49. Zhang H.X., Qiu Y.Y., Zhao Y.H. et al. Immunogenicity of oral vaccination with Lactococcus lactis derived vaccine candidate antigen (UreB) of Helicobacter pylori fused with the human interleukin 2 as adjuvant. Mol. Cell. Probes. 2014, 28 (1): 25-30.
  50. Zhang L.Y., Chang S.H., Wang J. How to make a minimal genome for synthetic minimal cell. Protein Cell. 2010, 1 (5): 427-434.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Kolesnikov A.V., Kozyr A.V., Shemyakin L.G., Lisitskaya L..., Marin M.A., Ryabko A.K., Dyatlov L...

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies