SYNTHETIC BIOLOGY AS AN INSTRUMENT FOR DEVELOPMENT OF INNOVATIVE VACCINES FOR PROPHYLAXIS OF BACTERIAL INFECTIONS
- Authors: Kolesnikov A.V.1,2, Kozyr A.V.1, Shemyakin L.G.1, Lisitskaya L...1, Marin M.A.1, Ryabko A.K.1, Dyatlov L...1
-
Affiliations:
- State Scientific Centre of Applied Microbiology and Biotechnology
- Institute of Engineering Immunology
- Issue: Vol 93, No 4 (2016)
- Pages: 105-115
- Section: REVIEWS
- Submitted: 10.04.2019
- Published: 28.08.2016
- URL: https://microbiol.crie.ru/jour/article/view/76
- DOI: https://doi.org/10.36233/0372-9311-2016-4-105-115
- ID: 76
Cite item
Full Text
Abstract
Keywords
About the authors
A. V. Kolesnikov
State Scientific Centre of Applied Microbiology and Biotechnology; Institute of Engineering Immunology
Author for correspondence.
Email: noemail@neicon.ru
Россия
A. V. Kozyr
State Scientific Centre of Applied Microbiology and Biotechnology
Email: noemail@neicon.ru
Россия
L. G. Shemyakin
State Scientific Centre of Applied Microbiology and Biotechnology
Email: noemail@neicon.ru
Россия
LA. .. Lisitskaya
State Scientific Centre of Applied Microbiology and Biotechnology
Email: noemail@neicon.ru
Россия
M. A. Marin
State Scientific Centre of Applied Microbiology and Biotechnology
Email: noemail@neicon.ru
Россия
A. K. Ryabko
State Scientific Centre of Applied Microbiology and Biotechnology
Email: noemail@neicon.ru
Россия
LA. .. Dyatlov
State Scientific Centre of Applied Microbiology and Biotechnology
Email: noemail@neicon.ru
Россия
References
- Bai X., Borrow R. Genetic shifts of Neisseria meningitidis serogroup В antigens and the quest for a broadly cross-protective vaccine. Expert. Rev. Vaccines. 2010, 9(10): 1203-1217.
- Bambini S., Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov. Today. 2009, 14: 252-260.
- Barat S., Wilier Y., Rizos K. et al. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoSPathog. 2012, 8(10):el002966. doi: 10.1371/journal. ppat. 1002966.
- Bolhassani A., Zahedifard F. Therapeutic live vaccines as a potential anticancer strategy. Int. J. Cancer. 2012, 131 (8): 1733-1743.
- Carleton H.A. Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J. Biol. Med. 2010, 83 (4): 217-222.
- Cheng A.A., LuT.K. Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 2012, 14: 155-178.
- Cremers A.J., Mobegi F.M., de Jonge M.I. et al. The post-vaccine microevolution of invasive Streptococcus pneumoniae. Sci. Rep. 2015, 5: 14952.
- Coleman J.R., Papamichail D., Yano M. et al. Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J. Infect. Dis. 2011,203 (9): 1264-1273.
- Dastgheyb S.S., Otto M. Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol. 2015, 10: 1981-1995.
- De Groot A.S., Einck L., Moise L. et al. Making vaccines «on demand»: a potential solution for emerging pathogens and biodefense? Hum. Vaccin. Immunother. 2013, 9 (9): 1877-1884.
- D'Elia R.V., Harrison К., Oyston P. C. et al. Targeting the «cytokine storm» for the rapeutic benefit. Clin. Vaccine Immunol. 2013, 20 (3): 319-327.
- Del Tordello E., Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct. Genomics. 2013, 12 (4): 328-340.
- Editorial. Synthetic Biology: What's in a name? Nature Biotechnology. 2009, 27 (12): 1071-1073.
- Editorial. Unbottling the genes. Nature Biotechnology. 2009, 27 (12): 1059.
- Endy D. Foundations for engineering biology. Nature. 2005, 438 (7067): 449-453.
- Figueira R., Watson K.G., Holden D.W. et al. Identification of Salmonella pathogenicity is land-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. MBio. 2013, 4 (2): e00065. ч
- Finne J., Bitter-Suermann D., Goridis C. et al. An IgG monoclonal antibody to group В meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J. Immunol. 1987, 138: 4402-4407.
- Galen J.E., Curtiss R. The delicate balance in genetically engineering live vaccines. Vaccine. 2014, 32 (35): 4376-4385.
- Gould N., Hendy O., Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front. Bioeng. Biotechnol. 2014, 2: 41.
- Gutman G.A., Hatfield G. W. Nonrandom utilization of codon pairs in Escherichia coli. Proc. Nat. Acad. Sci. USA. 1989, 86, (10): 3699-3703.
- Homer M., Reischmann N., Weber W. Synthetic biology: programming cells for biomedical applications. Perspect. Biol. Med. 2012, 55 (4): 490-502.
- Jefferies J.M. C., Johnston C.H. G., Kirkham L-A.S. et al. Presence of nonhemolytic pneumolysin in serotypes of Streptococcus pneumoniae associated with disease outbreaks. J. Infect. Dis. 2007, 196 (6): 936-944.
- Kindsmiiller K., Wagner R. Synthetic biology: impact on the design of innovative vaccines. Hum. Vaccin. 2011, 7 (6): 658-662.
- Kleber-Janke T, Becker W. M. Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr. Purif. 2000, 19(3): 419-424.
- Liljeroos L., Malito E., Ferlenghi I. et al. Structural and computational biology in the design of immunogenic vaccine antigens. J. Immunol. Res. 2015, 4: 1-17.
- Liss V, Hensel M. Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica. Cell Microbiol. 2015, 17 (5): 639-647.
- Liu Y., Shin H.D., Li J. et al. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects. Appl. Microbiol. Biotechnol. 2015, 99 (3): 1109-1118.
- Morgan-Kiss R.M., Wadler C., Cronan J. E. et al. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Nat. Acad. Sci. USA. 2002, 99 (11): 7373-7377.
- Neyen C., Lemaitre B. Sensing Gram-negative bacteria: a phylogenetic perspective. Curr. Opin. Immunol. 2015, 38: 8-17.
- Pascual D.W., Suo Z., Cao L. et al. Attenuating gene expression (AGE) for vaccine development. Virulence. 2013, 4 (5): 384-390.
- Powell D.A., Roberts L.M., Ledvina H.E. et al. Distinct innate responses are induced by attenuated Salmonella enterica serovar Typhimurium mutants. Cell Immunol. 2016, 299: 42-49.
- Reiss T. Synthetic Biology. FEBS Lett. 2012, 586 (15): 2027-2028.
- Rollier C.S., Dold C., Marsay L. et al. The capsular group В meningococcal vaccine, 4CMenB: clinical experience and potential efficacy. Expert. Opin. Biol. Ther. 2015, 15 (1): 131-142.
- Rinaudo C.D., Telford J.L., Rappuoli R. et al. Vaccinology in the genome era. J. Clin. Invest. 2009, 119 (9): 2515-2525.
- Ruchaud-Sparagano M.H., Mills R., Scott J. et al. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing. Immunol. Cell. Biol. 2014, 92 (9): 799-809.
- Runco L.M., Stauft C.B., Coleman J.R. Tailoring the immune response via customization of pathogen gene expression. J. Pathog. 2014: 1-7.
- Serruto D., Bottomley M.J., Ram S. et al. The new multicomponent vaccine against meningococcal serogroup В, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine. 2012, 30 (2): 87-97.
- Shahabi V., Maciag P.C., Rivera S. et al. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng. Bugs. 2010, 1 (4): 235-243.
- Shima H., Watanabe X, Fukuda S. et al. A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses. Int. Immunol. 2014, 26 (11): 619-625.
- Slusarczyk A.L., Lin A., Weiss R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 2012, 13 (6): 406-420.
- Steinhagen F., KinjoT., Bode C. et al. TLR-based immune adjuvants. Vaccine. 2011, 29 (17): 3341-3355.
- Szybalski W., SkalkaA. Nobel prizes and restriction enzymes. Gene. 1978, 4: 181-182.
- Tacket C.O., Losonsky G., Nataro J.P. et al. Safety and immunogenicity of live oral cholera vaccine candidate CVD 110, a delta ctxA delta zot delta ace derivative of El Tor Ogawa Vibrio cholera. J. Infect. Dis. 1993, 168 (6): 1536-1540.
- Tarahomjoo S. Development of vaccine delivery vehicles based on lactic acid bacteria. Mol. Biotechnol. 2012, 51 (2): 183-199.
- Van Blokland H.J., Kwaks T.H., Sewalt R.G. et al. A novel, high stringency selection system allows screening of few clones for high protein expression. J. Biotechnol. 2007, 128 (2): 237-245.
- Wang S., Kong Q., Curtiss R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb. Pathog. 2013, 58: 17-28.
- Weber W., Fussenegger M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 2011,13 (1): 21-35.
- WyszynskaA., Kobierecka R, Bardowski J. et al. Lactic acid bacteria - 20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 2015, 99 (7): 2967-2977.
- Zhang H.X., Qiu Y.Y., Zhao Y.H. et al. Immunogenicity of oral vaccination with Lactococcus lactis derived vaccine candidate antigen (UreB) of Helicobacter pylori fused with the human interleukin 2 as adjuvant. Mol. Cell. Probes. 2014, 28 (1): 25-30.
- Zhang L.Y., Chang S.H., Wang J. How to make a minimal genome for synthetic minimal cell. Protein Cell. 2010, 1 (5): 427-434.