INHIBITION OF GROWTH OF BACTERIA IN STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA CULTURES BY COPPER AND ZINC CATIONS, APPLIED AT PHYSIOLOGICAL CONCENTRATIONS

Cover Page

Cite item

Full Text

Abstract

Aim. Evaluation of antibacterial effect of y-globulin fraction bound and free copper and zinc cations, applied in cultures of S. aureus and P. aeruginosa at physiological (micromolar) concentrations. Materials and methods. Day cultures of S. aureus or P. aeruginosa were transferred from agar to physiological solution, and cell suspension was prepared, containing approximately 103 - 104 CFU/ml. Samples of metal-complexes of y-globulin with copper and zinc cations (30 and 45 pg/ml), control y-globulins (30 and 45 pg/ml) and salt solutions of copper and zinc, cation content in those corresponded to the quantity of the metal, that had bound with the protein at the stage of metal-complex obtaining (75 ng/ml), were introduced into the suspension. The suspensions were incubated at 37°C for 6 hours, sampling and CFU count according to the accepted micromethod was carried out every 2 hours. By the end of incubation (6 hours of observation) the suspensions were transferred into nutrient broth, thermostated for 1 day at 37°C, transparency of the nutrient broth compared with control (sterile) was evaluated afterwards. Results. Toxic effect of copper and zinc cations is detected starting from the 3rd hour of observation in S. aureus culture. Viable bacteria are absent in the culture with zinc after 6 hours, with copper - after 4 hours of incubation, y-globulin, that had bound copper cations, reduces the quantity of viable cells compared with control protein by 11.9 - 33.0% (p<0.05 - 0.1) at 4 and 6 hours of incubation. In P. aeruginosa culture, toxic effect of copper cations manifests immediately after initiation of the culture and results in realization of complete bactericidal effect after 4 hours of observation. Zinc cations do not have such properties, y-globulin, that had bound copper cations, reduces the quantity of viable cells compared with control protein at 4 and 6 hours of incubation by 19.3 - 25.8 % (p<0.001). Conclusion. S. aureus bacteria, supported in physiological solution are subject to toxic effect of physiological (micromolar) concentrations of free copper and zinc cations, and also copper cations, bound by human serum y-globulin. P. aeruginosa bacteria under the same conditions experience toxic effect of copper cations (but not zinc), free as well as bound by human serum y-globulin. Whereas a full bactericidal effect is realized in S. aureus and P. aeruginosa cultures in the presence of free cations of copper.

About the authors

S. B. Cheknev

Gamaleya Federal Research Centre of Epidemiology and Microbiology

Author for correspondence.
Email: noemail@neicon.ru
Россия

E. I. Vostrova

Gamaleya Federal Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Россия

M. A. Sarycheva

Gamaleya Federal Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Россия

A. V. Vostrov

Gamaleya Federal Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Россия

References

  1. Медицинская микробиология. В.И.Покровский, О.К.Поздеев (ред.). М., ГЭОТАР Медицина, 1998.
  2. Тотолян А.А., Бурова Л.А. Fc-рецепторные белки Streptococcus pyogenes и патогенез постинфекционных осложнений. Журн. микробиол. 2014, 3: 78-90.
  3. Чекнёв С.Б., Бабаева Е.Е., Голуб А.Е., Денисова Е.А., Воробьёва У.А. Эффекты меди и цинка при связывании с человеческим сывороточным у-глобулином. Мед. иммунология. 2006, 8 (5-6): 615-622.
  4. Чекнёв С.Б., Вострова Е.И., Писковская Л.С., Востров А.В. Эффекты катионов меди и цинка, связанных белками у-глобулиновой фракции, в культуре Staphylococcus aureus. Журн. микробиол. 2014, 3: 4-9.
  5. Чекнёв С.Б., Вострова Е.И., Апресова М.А., Писковская Л.С., Востров А.В. Торможение роста бактерий в культурах Staphylococcus aureus и Pseudomonas aeruginosa в присутствии катионов меди и цинка. Журн. микробиол. 2015, 2: 9-17.
  6. Ammendola S., Pasquali Р., Pistoia C. et al. High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect. Immunity. 2007, 75 (12): 5867-5876.
  7. Borza D.-B., Morgan W.T. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by pH and metals. J. Biol. Chemistry. 1998,273 (10): 5493-5499.
  8. Botella H., Stadthagen G., Lugo-Villarino G. et al. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol. 2012, 20(3): 106-112.
  9. Conrady D.G., Brescia C.C., Horii K. et al. A zinc-dependent adhesion molecule is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl. Acad. Sci. USA. 2008, 105 (49): 19456-19461.
  10. Corbin B.D., Seeley E.H., Raah A. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008, 319 (15): 962-965.
  11. Crane J.K., Naeher T.M., Shulgina I. et al. Effect of zinc in enteropathogenic Escherichia coli infection. Infect. Immunity. 2007, 75 (12): 5974-5984.
  12. Espirito Santo C., Lam E.W., Elowsky C.G. et al. Bacterial killing by dry metallic copper surfaces. Appl. Environm. Microbiol. 2011, 77 (3): 794-802.
  13. Golub E.E., Cheruka J., Boosz B. et al. A comparison of bacterial aggregation induced by saliva, lysozyme, and zinc. Infect. Immunity. 1985, 48 (1): 204-210.
  14. Gorgani N.N., Parish C.R., Altin J.G. Differential binding of histidine-rich glycoprotein (HRG) to human IgG subclasses and IgG molecules containing к and A. light chains. J. Biol. Chemistry. 1999, 274 (42): 29633-29640.
  15. GrassG., RensingC., SoliozM. Metallic copperas an antimicrobial surface. Appl. Environm. Microbiol. 2011. 77 (5): 1541-1547.
  16. Hodgkinson V, Petris M.J. Copper homeostasis at the host-pathogen interface. J. Biol. Chemistry. 2012, 287 (17): 13549-13555.
  17. Hood M.I., SkaarE.P. Nutritional immunity: transition metals at the pathogen-host interface. Nature Rev. Microbiol. 2012, 10: 525-537.
  18. Lu Y. Metal ions as matchmakers for proteins. Proc. Natl. Acad. Sci. USA. 2010, 107 (5): 1811-1812.
  19. Remy L., Carriere M., Derre-Bobillot M. et al. The Staphylococcus aureus Oppl ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Molec. Microbiol. 2013, 87 (4): 730-743.
  20. Rink L., Kirchner H. Zinc-altered immune function and cytokine production. J. Nutrition. 2000, 130(5, Suppl.): 1407-1411.
  21. Salgado E.N., Ambroggio X.I., Brodin J.D. et al. Metal templated design of protein interfaces. Proc. Natl. Acad. Sci. USA. 2010, 107 (5): 1827-1832.
  22. Samanovic M.I., Ding C., Thiele D.J., Darwin K.H. Copper in microbial pathogenesis: med-ding with the metal. Cell Host Microbe. 2012, 11: 106-115.
  23. Shafeeq S., Kuipers O.P., Kloosterman T.G. The role of zinc in the interplay between pathogenic streptococci and their hosts. Molec. Microbiol. 2013, 88 (6): 1047-1057.
  24. Stafford S.L., Bokil N.J., Achard M.E.S. et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Bioscience Reports. 2013, 33 (4): 541-554.
  25. Waldron K. J., Robinson N. J. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Rev. Microbiol. 2009, 7: 25-35.
  26. Yamamoto K., Ishihama A. Transcriptional response of Escherichia coli to external zinc. J. Bacteriol. 2005, 187 (18): 6333-6340.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Cheknev S.B., Vostrova E.I., Sarycheva M.A., Vostrov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies