СОВРЕМЕННЫЕ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МЕТОДЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ЭТИОЛОГИЧЕСКОЙ ДИАГНОСТИКИ СЕПСИСА

Обложка


Цитировать

Полный текст

Аннотация

Этиологическая диагностика сепсиса представляет собой одну из наиболее сложных проблем современной медицины в связи с широким разнообразием возбудителей сепсиса, многие из которых являются компонентами нормальной микрофлоры человека. Недостатками современного «золотого стандарта» микробиологической диагностики этиологии сепсиса методом посева крови на стерильность являются длительность культивирования, ограничение в выявлении некультивируемых форм микроорганизмов, значительное влияние предварительной эмпирической антибиотикотерапии на результат анализа. Этих недостатков лишены методы молекулярной диагностики, активно разрабатываемые и внедряемые в последнее десятилетие. В обзоре рассмотрены основные современные методы молекулярно-биологической диагностики, приведены актуальные данные по их диагностической характеристике. Особое внимание уделено методам ПЦР-диагностики, включая новые российские разработки. В сравнительном аспекте рассмотрены методы гибридизации нуклеиновых кислот и протеомного анализа. Дана оценка применения и перспектив развития методов молекулярной диагностики сепсиса.

Об авторах

С. Н. Гаврилов

Центральный НИИ эпидемиологии

Автор, ответственный за переписку.
Email: noemail@neicon.ru
Россия

Т. С. Скачкова

Центральный НИИ эпидемиологии

Email: noemail@neicon.ru
Россия

О. Ю. Шипулина

Центральный НИИ эпидемиологии

Email: noemail@neicon.ru
Россия

Ю. А. Савочкина

Центральный НИИ эпидемиологии

Email: noemail@neicon.ru
Россия

Г. А. Шипулин

Центральный НИИ эпидемиологии

Email: noemail@neicon.ru
Россия

В. В. Малеев

Центральный НИИ эпидемиологии

Email: noemail@neicon.ru
Россия

Список литературы

  1. Грувер К.П., Белобородов В.Б., Кузьменко Т.Н. Актуальные аспекты сепсиса. Антибиотики и химиотерапия. 2011, 56 (3-4): 35-40.
  2. Ильина В.Н., Субботовская А.И., Князькова Л.Г., Козырева В.С., Скачкова Т.С., Шипулина О.Ю., Сергеевичев Д.С., Субботовский А.П. Применение молекулярно-биологических методов исследования для диагностики инфекции области хирургического вмешательства, вызванной бактериями рода Staphylococcus. Патология кровообращения и кардиохирургия. 2011, 4: 43-46.
  3. Савельев В.С., Гельфанд Б.Р (ред.) Сепсис в начале XXI века. Классификация, клиникодиагностическая концепция и лечение. Патолого-анатомическая диагностика. Практическое руководство. М, 2006.
  4. Скачкова Т.С., Шипулина О.Ю., Домонова Э.А. и др. Разработка и апробация набора реагентов для выявления и количественного определения ДНК метициллинчувствительного и метициллинрезистентного Staphylococcus aureus, а также метициллинрезистентных коагу-лазонегативных Staphylococcus spp. методом полимеразной цепной реакции в режиме «реального времени». Клиническая лабораторная диагностика. 2013, 6: 42-45.
  5. Avolio M., Diamante P, Modolo M.L. et al. Direct molecular detection of pathogens in blood as specific rule-in diagnostic biomarker in patients with presumed sepsis: our experience on a heterogeneous cohort of patients with signs of infective systemic inflammatory response syndrome. Shock. 2014, 42 (2): 86-92.
  6. Bauer K.A., West J.E., Balada-Llasat J.-M. et al. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin. Infect. Dis. 2010, 5: 1074-1080.
  7. Becker K., Larsen A.R., Skov R.L. et al. Evaluation of a modular multiplex-PCR methicillin-resistant Staphylococcus aureus detection assay adapted for mecC detection. J. Clin. Microbiol. 2013, 51 (6): 1917-1919.
  8. Blaschke A.J., Heyrend C., Byington C.L. et al. Rapid identification ofpathogens from positive blood cultures by multiplex polymerase chain reaction using the Film Array system. Diagn. Microbiol. Infect. Dis. 2012, 74 (4): 349-355.
  9. Bloos F., Sachse S., Kortgen A. et al. Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study. PLoS One. 2012, 7 (9): e46003.
  10. Burdino E., Ruggiero T., Allice T. et al. Combination of conventional blood cultures and the SeptiFast molecular test in patients with suspected sepsis for the identification of bloodstream pathogens. Diagn. Microbiol. Infect. Dis. 2014, 79 (3): 287-292.
  11. Carrara L., Navarro F., Turbau M. et al. Molecular diagnosis of bloodstream infections with 1 a new dual priming oligonucleotide-based multiplex PCR assay. J. Med. Microbiol. 2013, 62: 16731679.
  12. Chang S.-S., Hsieh W-H., Liu T.-S. et al. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis - a systemic review and meta-analysis. PLoS One. 2013, 8 (5): e62323.
  13. Clerc O., Prod’hom G., Vogne C. et al. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management ofpatients with Gram-negative bacteremia: a prospective observational study. Clin. Infect. Dis. 2013, 56: 1101-1107.
  14. Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin. Microbiol. Infect. 2010, 16: 16201625.
  15. Fantin Y.S., Neverov A.D., Favorov A.V. et al. Base-Calling Algorithm with Vocabulary (BCV) method for analyzing population sequencing chromatograms. PLoS One. 2013, 8 (1): e54835.
  16. Fast-track diagnostics. FTD neonatal sepsis. Manual. 2012, V1.
  17. Forrest G.N. PNA FISH: present and future impact on patient management. Expert Rev. Mol. Diagn. 2007, 7: 231-236.
  18. Gescher D.M., Kovacevic D., Schmiedel D. et al. Fluorescence in situ hybridization (FISH) accelerates identification of Gram-positive cocci in positive blood cultures. Int. J. Antimicrob. Ag. 2008, 32 (S1): S51-S59.
  19. Haag H., Locher F., Nolte O. Molecular diagnosis of microbial aetiologies using SepsiTest™ in the daily routine of a diagnostic laboratory. Diagn. Microbiol. Infect. Dis. 2013, 76 (4): 413-418.
  20. Jarvinen A.K., Laakso S., Piiparinen P et al. Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol. 2009, 9: 161.
  21. Kasper D.C., Altiok I., Mechtler T.P. et al. Molecular detection of late-onset neonatal sepsis in premature infants using small blood volumes: proof-of-concept. Neonatology. 2013, 103 (4): 268273.
  22. Kommedal O., Karlsen B., Saebо O. Analysis of mixed sequencing chromatograms and its application in direct 16s rRNA gene sequencing of polymicrobial samples. J. Clin. Microbiol. 2008, 46: 3766-3771.
  23. Lebovitz E.E., Burbelo P.D. Commercial multiplex technologies for the microbiological diagnosis of sepsis. Mol. Diagn. Ther. 2013, 17 (4): 221-231.
  24. Lee A., Mirrett S., Reller L.B., Weinstein M.P Detection of bloodstream infections in adults: how many blood cultures are needed? J. Clin. Microbiol. 2007, 45: 3546-3548.
  25. Leggieri N., Rida A., Francois P, Schrenzel J. Molecular diagnosis ofbloodstream infections: planning to (physically) reach the bedside. Curr. Opin. Infect. Dis. 2010, 23: 311-319.
  26. Lehmann L.E., Alvarez J., Hunfeld K.-P. et al. Potential clinical utility of polymerase chain reaction in microbiological testing for sepsis. Crit. Care Med. 2009, 37 (12): 3085-3090.
  27. Lehmann L.E., Herpichboehm B., Kost G.J. et al. Cost and mortality prediction using polymerase chain reaction pathogen detection in sepsis: evidence from three observational trials. Crit. Care. 2010, 14: R186.
  28. Liesenfeld O., Lehman L., Hunfeld K.-P et al. Molecular diagnosis ofsepsis: new aspects and recent developments. Europ. J. Microbiol. Immunol. 2014, 4 (1): 1-25.
  29. Lindholm L., Sarkkinen H. Direct identification ofgram-positive cocci from routine blood cultures by using AccuProbe tests. J. Clin. Microbiol. 2004, 42: 5609-5613.
  30. Mancini N., Carletti S., Ghidoli N. et al. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin. Microbiol. Rev. 2010, 23: 235-251.
  31. Mencacci A., Leli C., Montagna P et al. Diagnosis of infective endocarditis: comparison of the LightCycler SeptiFast real-time PCR with blood culture. J. Med. Microbiol. 2012, 61 (6): 881-883.
  32. Paolucci M., Capretti M.G., Dal Monte P et al. Laboratory diagnosis of late-onset sepsis in newborns by multiplex real-time PCR. J. Med. Microbiol. 2009, 58: 533-534.
  33. Pendleton J.N., Gorman S.P, Gilmore B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 2013, 11 (3): 297-308.
  34. Poritz M.A., Blaschke A.J., Byington C.L. et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One. 2011, 6: e26047.
  35. Reuter S., Ellington M.J., Cartwright E.J. et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern. Med. 2013, 173 (15): 1397-1404.
  36. Rice L.M., Reis A.H.Jr., Ronish B. et al. Design of a single-tube, endpoint, linear-after-the-expo-nential-PCR assay for 17 pathogens associated with sepsis. J. Appl. Microbiol. 2013, 114: 457469.
  37. Schreiber J., Nierhaus A., Braune S.A. et al. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med. Klin. Intensivmed. Notfmed. 2013, 108 (4): 311-318.
  38. Shah S.S., Downes K.J., Elliott M.R. et al. How long does it take to «rule out» bacteremia in children with central venous catheters? Pediatrics. 2008, 121: 135-141.
  39. StorhoffJ.J., Lucas A.D., Garimella V et al. Homogeneous detection ofunamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 2004, 22 (7): 883-887.
  40. Tissari P, Zumla A., Tarkka E. et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet. 2010, 375 (9710): 224-230.
  41. Torres-Martos E., Perez-Ruiz M., Pedrosa-Corral I. et al. Evaluacion de la tecnica LightCycler® SeptiFast en recien nacidos y lactantes con sospecha de sepsis. Enferm. Infec. Microbiol. Clin. 2013, 31 (6): 375-379.
  42. Vlek A.L.M., Bonten M.J.M., Boel C.H.E. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One. 2012, 7 (3): e32589.
  43. Wellinghausen N., Wirths B., Essig A. et al. Evaluation of the hyplex bloodscreen multiplex PCR-enzyme-linked immunosorbent assay system for direct identification of gram-positive cocci and gram-negative bacilli from positive blood cultures. J. Clin. Microbiol. 2004, 42: 3147-3152.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Гаврилов С.Н., Скачкова Т.С., Шипулина О.Ю., Савочкина Ю.А., Шипулин Г.А., Малеев В.В., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах