IMMUNOREGULATORY PROFILE OF MICROSYMBIONTS OF THE INTESTINAL HUMAN BIOTOPE

Cover Page


Cite item

Full Text

Abstract

Aim. To study in comparison immunoregulatory properties of dominant and associative microsymbionts metabolites in human large intestine’s eubiosis and dysbiosis. Materials and methods. 260 strains of bifidobacteria used as dominant microbiota, 132 cultures of conditionally pathogenic bacteria and fungi used as associative microsymbionts from 122 intestinal microsymbiocenoses. The cytokines production was studied in cultures of mononuclear cells co-cultivated with microsymbionts’ supernatants. The results were processed statistically (Statistica 10.0). Results. In eubiosis, dominant and associative microsymbionts showed immuno regulatory properties heterogeneity. In the case of phlogogenic cytokines, the associates equally exhibited stimulation / suppression / no effect on cytokines, except for enterococci and bacteroids, stimulating IL-8 secretion, and lactobacilli, inducing IFNy. Dominants were characterized by a unidirectional effect: IL-10 secretion stimulation and TNFa, IFNy and IL-17suppression, while retaining the induction of IL-10 in dysbiosis. In contrast, supernatants of the associates combined the opposing cytokines production: the early proinflammatory cytokine TNFa, the immunoregulatory cytokine IFNy and the antiinflammatory cytokine IL-10. Conclusion. Intestinal homeostasis in eubiosis is supported by differentiated effects of microsymbionts’ metabolites on the production of antiinflammatory, immunoregulatory cytokines with the formation of an optimal balance, limiting inflammatory and autoimmune reactions. The dominance of the immunoregulatory properties remains intact in the conditions of dysbiosis, and the variety of effects on pro-/antiin-flammatory cytokines is limited in the associates.

About the authors

O. V. Bukharin

Institute of Cellular and Intracellular Symbiosis

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

I. N. Chainikova

Institute of Cellular and Intracellular Symbiosis,Orenburg State Medical University

Email: noemail@neicon.ru
Russian Federation

E. V. Ivanova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

N. B. Perunova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

T. A. Bondarenko

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

A. I. Smolyagin

Orenburg State Medical University

Email: noemail@neicon.ru
Russian Federation

References

  1. Гапон М.Н., Терновская Л.Н., Денисенко О.В., Зарубинский В.Я. Показатели иммунитета и локальной защиты у людей с дисбактериозом кишечника. Журн. микробиол. 2014, 4: 65-68.
  2. Зорина В.В., Николаева Т.Н., Наровлянский А.Н. Влияние бактерий рода Lactobacillus на продукцию цитокинов клетками пейеровых бляшек экспериментальных животных. Иммунология, 2004, 5: 288-290.
  3. Carvalho R.D.D.O., do Carmo F.L.R., de Oliveira Junior A. et al. Use of Wild Type or Recombinant Lactic Acid Bacteria as an Alternative Treatment for Gastrointestinal Inflammatory Diseases: A Focus on Inflammatory Bowel Diseases and Mucositis. Frontiers in Microbiology. 2017, 8:800. doi: 10.3389/fmicb.2017.00800.
  4. de Moreno de LeBlanc A., Del Carmen S., Chatel J.M.et al. Current Review of Genetically Modified Lactic Acid Bacteria for the Prevention and Treatment of Colitis Using Murine Models. Gastroenterol. Res. Pract. 2015:146972. doi: 10.1155/2015/146972.
  5. Kim D., Ybo S.A., Kim W.U. Gutmicrobiota in autoimmunity: potential for clinical applications. Arch Pharm Res. 2016, 39 (11): 1565-1576.
  6. Kim D., Zeng M.Y., Nunez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Experimental Molecular Medicine. 2017, 49(5): e339-. doi: 10.1038/emm.2017.24.
  7. Koh A., De Vadder F., Kovatcheva-Datchary P., Backhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016,165: 1332-1345.
  8. Lee S.H., Kwon J., Cho M.-L. Immunological pathogenesis of inflammatory bowel disease. Intestinal Research. 2018, 16 (1): 26-42.
  9. Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17 (4): 219-232.
  10. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology. 2017, 18:2. doi: 10.1186/s12865-016-0187-3.
  11. Llewellyn A., Foey A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients. 2017, 9 (10): 1156. doi: 10.3390/nu9101156.
  12. Mowat A.M., Bain C.C. Mucosal Macrophages in Intestinal Homeostasis and Inflammation. Journal of Innate Immunity. 2011, 3 (6): 550-564.
  13. Nakase H., Okazaki K., Tabata Yet al. New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J. Pharmacol. Exp. Ther. 2002, 301 (1): 59-65.
  14. Pagliari D., Gambassi G., Piccirillo C.A. et al. The Intricate Link among Gut Immunological Niche, Microbiota, and Xenobiotics in Intestinal Pathology. Mediators of Inflammation. 2017:8390595. doi: 10.1155/2017/8390595.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Bukharin O.V., Chainikova I.N., Ivanova E.V., Perunova N.B., Bondarenko T.A., Smolyagin A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies