PLASMID DESIGN FOR PRODUCTION OF CHIMERIC ANTIBODIES WITH DEFINED SPECIFICITY IN EUKARYOTES

Cover Page


Cite item

Full Text

Abstract

Aim. In this study we aimed to design the universal genetic construction expressing the light and heavy chains of a chimeric antibody, to develop methodological approaches for the production of chimeric antibodies with defined specificity using the monoclonal antibodies to diphtheria toxin (DT) DT-17 in the CHO cells as an example and to evaluate their immunochemical and effector properties. Materials and methods. Variable region genes of the light and heavy chains of mouse antibodies DT-17 to diphtheria toxin were obtained by PCR method and cloned into pCI-neo plasmid vector. The S V DT -17neo «supervector» containing the genes of a chimeric antibody was constructed by using of genetic engineering techniques. CHO cells were transfected with «supervector» and a highly productive clone secreting chimeric antibodies to DT were collected. Immunochemical methods were used to evaluate antibody activity, and affinity chromatography was used to prepare preparative amounts of the antibodies. Results. U ni versal vectors pLK DT -17 and pHG DT-17 containing light and heavy chain genes of the chimeric antibodies DT -17 to DT were constructed. The variable and constant region genes were flanked by endonuclease restriction sites, which allows to change the specificity of the antibodies. In the future it will make possible to study the modifications of the class and species specificity of the chimeric immunoglobulins. When the CHO cell culture was transfected with the designed vectors, the accumulation of antibodies to DT in the culture medium was detected. The yield of purified DT-17 chimeric antibodies was 4 mg per 1 liter of culture medium. The minimum concentration of chimeric antibodies necessary for DT neutralization in the CHO cells was 30 pg/mL. Conclusion. Universal plasmids encoding the synthesis of light and heavy chains of chimeric DT -17 antibody have been designed. On the basis of these vectors, a «supervector» and a highly productive clone secreting specific antibodies that had neutralizing activity against DT were obtained.

About the authors

A. S. Oksanich

Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

T. G. Samartseva

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

E. B. Faizjuloev

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

N. F. Gavrilova

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

I. V. Yakovleva

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

V. V. Sviridov

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

V. V. Zverev

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

References

  1. Деев С.М., Лебеденко Е.Н. Современные технологии создания неприродных антител для клинического применения. Acta Naturae. 2009, 1: 32-50.
  2. Деев С.М., Лебеденко Е.Н., Петровская Л.Е., Долгих Д.А., Габибов А.Г., Кирпичников М.П. Неприродные антитела и иммуноконъюгаты с заданными свойствами: оптимизация функций через направленное изменение структуры. Успехи химии. 2015, 84 (1): 1-26.
  3. Ройт А., Бростофф Дж., Мейл Д. Иммунология. М., Мир, 2000.
  4. Imai S., Mukai Y., Nagano К. et al. Quality enhancement of the non-immune phage scFv library to isolate effective antibodies. Biol. Pharm. Bull. 2006, 29 (7): 1325-1330.
  5. KreitmanR.J. Immunotoxins for targeted cancer therapy. AAPSJ. 2006, 8 (3): 532-551.
  6. Pai L.H., Wittes R., Setser A. et al. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat. Med. 1996, 2: 350-353.
  7. Redwan R.M. Animal-derived pharmaceutical proteins. J. Immunoassay Immunochem. 2009, 30 (3): 262-290.
  8. Teicher B.A., Chari R.V. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer. Res. 2011, 17 (20): 6389-6397.
  9. Witzig T.E. Radioimmunotherapy for В-cell non-Hodgkin lymphoma. Best Pract. Res. Clin. Haematol. 2006, 19: 655-668.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Oksanich A.S., Samartseva T.G., Faizjuloev E.B., Gavrilova N.F., Yakovleva I.V., Sviridov V.V., Zverev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies