ANTIGENS OF SURFACE STRUCTURES OF HAEMOPHILUS INFLUENZAE AS PERSPECTIVE VACCINE-CANDIDATES

Cover Page


Cite item

Full Text

Abstract

Despite long and successful use of Haemophilus influenzae b (Hib) vaccine, production of the vaccine against non-typed strains of Haemophilus influenzae (NTHi) is only being developed. Difficulties of this work are determined by features of NTHi compared with Hib: lack of polysaccharide capsule, high level of antigenic heterogeneity and specialties of pathogenesis development that includes spread through the organism from mucosa of the respiratory tract. Currently, 15 surface structures of NTHi are being actively studied with the aim of creating the vaccine. PE, P2, P6, PD proteins, outer membrane vesicles (OMVs) and others are among them. Only PD protein currently has practical application, that was used as a carrier with antigenic function in conjugated polysaccharide vaccines against pneumonia (Prevenar; PHiD-CV). Vaccination with these preparations allowed to reduce the total morbidity with acute rhinitis on children by 33 - 52%. However, this result can not be examined as final, thus, research and approbation of the vaccine-candidates continues.

About the authors

N. N. Ovechko

Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

N. E. Yastrebova

Mechnikov Research Institute of Vaccines and Sera

Email: noemail@neicon.ru
Russian Federation

References

  1. Akkoyunlu М., Ruan М., Forsgren A. Distribution of protein D, an immunoglobulin D-binding protein, in Haemophilus strains. Infect. Immun. 1991,59: 1231-1238.
  2. Arbing M. A., Hanrahan J. W., Coulton J. W. Mutagenesis identifies amino acid residues in extracellular loops and within the barrel lumen that determine voltage gating of porin from Haemophilus influenzae type b. Biochemistry. 2001, 40: 14621-14628.
  3. Barenkamp S.J., Jr., Munson R.S., Granoff D.M. Outer membrane protein and biotype analysis of pathogenic nontypabie Haemophilus influenzae. Infect. Immun. 1982, 36: 535-540.
  4. Bell J., Grass S., Jeanteur D. Diversity of the P2 protein among nontypeable Haemophilus influenzae isolates. Infect. Immun. 1994, 62: 2639-2643.
  5. Black S., Shinefield H., Fireman B. et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J. 2000, 19: 187.
  6. Burrage M., Robinson A., Borrow R. et al. Effect ofvaccination with carrier protein on response to meningococcal C conjugate vaccines and value of different immunoassays as predictors of protection. Infect. Immun. 2002, 70: 4946-4954.
  7. Cantisani M., Vitiello M., Falanga A. et al. Peptides complementary to the active loop of porin P2 from Haemophilus influenzae modulate its activity. Int. J. Nanomedicine. 2012, 7: 2361-2371.
  8. Concino M. F., Goodgal S. H. DNA-binding vesicles released from the surface of a competence-deficient mutant of Haemophilus influenzae. J. Bacteriol. 1982, 152: 441-450.
  9. Coulton J.W., Chin A.C., Vachon V. Recombinant porin of Haemophilus influenzae tvpe b. J. Infect. Dis. 1992, 165 (Suppl.): 188-191.
  10. Croxtall J.D., Keating G.M. Pneumococcal polysaccharide protein D-conjugate vaccine (Synflorix; PHiD-CV). Paediatr. Drugs. 2009, 11 (5): 349-357.
  11. Druim B., Dankert J., Jansen H.M. et al. Genetic analysis of the diversity in outer membrane protein P2 of non-encapsulated Haemophilus influenzae. Microb. Pathos. 1993, 14: 451 -462.
  12. Duim B., Ruiter P, Bowler L.D. et al. Sequence variation in the hpd gene of nonencapsulated Haemophilus influenzae isolated from patients with chronic bronchitis. Gene. 1997, 191: 57-60.
  13. Erwin A.L., Smith A.L. Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol. 2007, 15: 355-362.
  14. Fleischmann R.D., Adams M.D., White O. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995, 269: 496-512.
  15. Forsgren A., Riesbeck K., Janson H. Protein D of Haemophilus influenzae: a protective non-tvpeable H. influenzae antigen and a earner for pneumococcal conjugate vaccines. Clin. Infect. Dis. 2008,46 (5): 726-731.
  16. GuX.X., Rudy S.F., Chu C. et al. Phase I study of a lipooligosaccharide-based conjugate vaccine against nontypeable Haemophilus influenzae. Vaccine. 2003, 21(Issues 17-18): 2107-2114.
  17. Hallstrom X, Blom A.M., Zipfel P.F. et al. Nontypeable Haemophilus influenzae protein E binds vitronectin and is important for serum resistance. J. Immunol. 2009, 183 (4): 2593-2601.
  18. Hallstrom X, Singh B., Resman F. et al. Haemophilus influenzae protein E binds to the extracellular matrix by concurrently interacting with laminin and vitronectin. J. Infect. Dis. 2011, 204(7): 1065-1074.
  19. Harrison A., Dyer D.W., Gillaspy A. et al. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotvpe d, strain KW20. J. Bacteriol. 2005, 187: 4627-4636.
  20. Janson H., Heden L.O., Grubb A. et al. Protein D, an immunoglobulin D-binding protein of Haemophilus influenzae: cloning, nucleotide sequence, and expression in Escherichia coli. Infect. Immun. 1991, 59: 119-125.
  21. Kim S.H., Kim K.S., Lee S.R. et al. Stmctural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim. Biophys. Acta. 2009, 1788: 2150-2159.
  22. KulpA., KuehnM.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010, 64: 163-184.
  23. Lysenko E.S., Ratner A.J., Nelson A.L. et al. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog. 2005. 1(1): el.
  24. Morris S.K., Moss W.J., Halsey N. Haemophilus influenzae type b conjugate vaccine use and effectiveness. Lancet. Infect. Dis. 2008, 8: 435-443.
  25. Murphy T. F., Dudas К. C, Mylotte J. M. etal. A subtyping system for nontypable Haemophilus influenzae based on outer-membrane proteins. J. Infect. Dis. 1983, 147: 838-846.
  26. Murphy T.F. Vaccines for nontypeable Haemophilus influenzae: the Future is now. Clin. Vaccine Immunol. 2015, 22 (5): 459-466.
  27. Nurkka A., Joensuu J., Henckaerts I. et al. Immunogenicity and safety of the eleven valent pneumococcal polysaccharide-protein D conjugate vaccine in infants. Pediatr. Infect. Dis. J. 2004, 23: 1008-1014.
  28. Pichichero M.E., Kaur R., Casey J.R. et al. Antibody response to Haemophilus influenzae outer membrane protein D, P6, and OMP26 after nasopharyngeal colonization and acute otitis media in children. Vaccine. 2010, 28 (44): 7184-7192.
  29. Poolman J.T., Bakaletz L., Cripps A. et al. Developing a nontypeable Haemophilus influenzae (NTHi) vaccine. Vaccine. 2000, 19 (Suppl 1): 108-115.
  30. Post D.M., Zhang D., Eastvold J.S. et al. Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. J Biol. Chem. 2005, 280: 38383-38394.
  31. Prymula R., Peeters R, Chrobok V. et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study Lancet. 2006, 367: 740-748.
  32. Ronander E., Brant M., Eriksson E. et al. Nontypeable Haemophilus influenzae adhesin protein E: characterization and biological activity. J. Infect. Dis. 2009, 199: 522-531.
  33. Saint N., Lou K. L., Widmer C. et al. Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization. J. Biol. Chem. 1996,271:20676-20680.
  34. Sexton K., Lennon D., Oster P. et al. The New Zealand meningococcal vaccine strategy: a tailor-made vaccine to combat a devastating epidemic. N. Z, Med. J. 2004, 117: 1015.
  35. Singh B., Jalalvand F, Morgelin M. et al. Haemophilus influenzae protein E recognizes the C-terminal domain ofvitronectinand modulates the membrane attack complex. Mol. Microbiol. 2011,81 (1): 80-98.
  36. Singhl B., Brantl M. et al. Protein E of Haemophilus influenzae is a ubiquitous highly conserved adhesin. J. Infect. Dis. 2010, 201 (3): 414-419.
  37. Sharpe S.W., Kuehn M.J., Mason K.M. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect. Immun. 2011, 79:4361-4369.
  38. Sun J., Chen J., Cheng Z. et al. Biological activities of antibodies elicited by lipooligosaccha-ride based-conjugate vaccines of nontypeable Haemophilus influenzae in an otitis media model. Vaccine. 2000, 18 (Issue 13): 1264-1272.
  39. Wu T, Chen J., Murphy T.F. et al. Investigation of nontypeable Haemophilus influenzae outer membrane protein P6 as a new carrier for lipooligosaccharide conjugate vaccines. Vaccine. 2005,23 (Issue 44): 5177-5185.
  40. Yi K., Murphy T. F. Importance of an immunodominant surface-exposed loop on outer membrane protein P2 of nontypeable Haemophilus influenzae. Infect. Immun. 1997, 65: ISO-155.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Ovechko N.N., Yastrebova N.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies