EFFECT OF ALUMINIUM HYDROXIDE ON INNATE IMMUNITY AND IMMUNOGENICITY OF BACTERIAL AND SYNTHETIC ANTIGENS OF STREPTOCOCCUS PNEUMONIAE


Cite item

Full Text

Abstract

Aim. Study the effect of aluminium hydroxide on molecular-cell mechanisms of innate immunity activation and its adjuvant effect on immunogenicity of natural bacterial and synthetic pneumococci antigens. Materials and methods. Surface markers of dendritic cells (DC), mononuclear leukocytes (ML) and cytokine levels were determined by flow cytometry; IgG titers - by EIA. Protective activity was evaluated in experiments with active protection of mice from infection with virulent pneumococci strains. Results. Aluminium hydroxide increased the ML content of mice spleen expressing TLR2 and TLR4. Its addition into the culture of immature DC induced the appearance of a population of cells with mature DC markers - CD83, CD80, CD86, however, the level of undifferentiated cells (CD34) and cells with adhesion molecules (CD11c, CD38) did not change. DC produced IL-ф, IL-5, IL-10, IFNy into the cultivation medium. An increase of cytokine production took place 2 hours after the administration into mice and was retained for the observation period (24 hours). Th1 (IFNy, TNFa) and Th2 (IL-5, IL-10, GM-CSF) cytokine production gave evidence on immune response polarization by Th1/Th2 type. After 2 administrations of aluminium hydroxide into mice the number of ML with CD19+, CD5+, NK1.1+, CD25+, MHCII+ markers increased during decrease of CD3+, CD4+ and CD8+ T-lymphocytes. Adaptive immunity activation was characterized by high IgG titers to pneumococci capsule polysaccharide and protection of 90 - 100% of the mice against infection with lethal doses of S. pneumoniae strains, was detected during 2-fold immunization of mice with conjugates of synthetic pneumococci oligosaccharides with BSA, sorbed onto aluminium hydroxide, whereas natural bacterial antigens provided 90 - 100% survival of animals during immunization without the adjuvant. Conclusion. Data are provided on the effect of aluminium hydroxide on key effectors of innate immunity: DC, ML, TLRs and cytokine production. A reasonable administration of this adjuvant was shown to be in association with conjugates of pneumococci synthetic oligosaccharides with a carrier protein.

About the authors

E. A Kurbatova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

E. A Akhmatov

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

N. K Akhmatova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

D. S Vorobiev

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

N. B Egorova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

A. P Baturo

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

E. E Romanenko

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

Yu. E Tsvetkov

Zelinsky Institute of Organic Chemistry, Moscow, Russia

E. V Sukhova

Zelinsky Institute of Organic Chemistry, Moscow, Russia

D. V Yashunsky

Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

N. E Nifantiev

Zelinsky Institute of Organic Chemistry, Moscow, Russia

References

  1. Воробьев Д.С., Семенова И.Б., Волох Ю.В., Кудряшов А.В., Маркова М.Е., Романенко Э.Е., Батуро А.П., Михайлова Н.А. Изучение протективной активности белоксодержащего комплекса антигенов Streptococcus pneumoniae в гомологичной системе. Журн. микрбиол. 2013, 1: 21-26.
  2. Курбатова Е.А., Воробьев Д.С., Егорова Н.Б., Батуро А.П., Романенко Э.Е., Маркова М.Е., Елкина С.И., Волох Ю.В., Цветков Ю.Е., Сухова Е.В., Яшунский Д.В., Нифантьев Н.Э., Михайлова Н.А. Штаммовые различия внутривидовой иммуногенной активности антигенных компонентов Streptococcus pneumoniae. Журн. микробиол. 2013, 5: 60-69.
  3. Allison A.C., Byars N.E. Immunological adjuvants: desirable properties and side-effects. Mol. Immunol. 1991, 28: 279-84.
  4. Franchi L., NMez G. The NLRP3 Inflammasome is critical for alum-mediated IL-1 Psecretion but dispensable for adjuvant activity. Eur. J. Immunol. 2008, 38 (8): 2085-2089.
  5. Glenny A.T., Pope C.G., Waddington H., Wallace V. The antigenic value of toxoid precipitated by potassium-alum. J. Path. Bact. 1926, 29: 38-45.
  6. Johnson A.G., Gaines S., Landy M. Studies on the O-antigen of Salmonella typhosa. V Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J. Exp. Med. 1956, 103: 225-246.
  7. Kensil C.R. Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug. Carrier Syst. 1996, 13: 1-55.
  8. Kool M., Soullie T., van Nimwegen M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 2008, 205: 869-882.
  9. Kool M., Edge C. Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 2008, 181: 3755-3759.
  10. Li H., Nookala S., Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J. Immunol. 2007, 178: 5271-5276.
  11. Li H., Willingham S.B., Ting J. P-Y. et al. Inflammasome activation by Alum and Alum’s adjuvant effect are mediated by NLRP3. J. Immunol. 2008, 181 (1): 17-21.
  12. Lindblad E.B. Aluminium compounds for use in vaccines. Immunol. Cell. Biol. 2004, 82: 497-505.
  13. Lindblad E. B. Are mineral adjuvants triggering TLR2/TLR4 on dendritic cells by a secondary cascade reaction in vivo through the action of heat shock proteins and danger signals? Vaccine. 2006, 24: 697-698.
  14. Lore K. et al. Novel adjuvants for B cell immune responses. Curr. Opin. HIV AIDS. 2009, 4 (5): 441-446.
  15. Mannhalter J.W., Neychev H.O., Zlabinger G.J. et al. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin. Exp. Immunol. 1985, 61: 143-151.
  16. Ramon G. Precedes pour accroitre la production des antitoxins. Ann. Inst. Pasteur. 1926, 40: 1-10.
  17. Ramon G. Sur l’augmentation anormale de l’antitoxine chez les chevaux producteurs de serum antidiphterique. Bull. Soc. Centr. Med. Vet. 1925, 101: 227-234.
  18. Snodgrass R.G., Huang S., Choi I.W. et al. Inflammasome-mediated secretion of IL-10 in human monocytes through TLR2 activation; modulation by dietary fatty acids. J. Immunol. 2013, 191 (8):4337-4347.
  19. Sokolovska A., Hem S.L. et al. Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants. Vaccine. 2007, 25: 4575-4585.
  20. Sun H., Pollock K.G., Brewer J.M. Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine. 2003, 21: 849-855.
  21. Vogel F.R., Powell M.F. A summary compendium of vaccine adjuvants and excipients. New York, Plenum Publishing Corp., 1995.
  22. Wang Y., Rahman D., Lehner T. A comparative study of stress-mediated immunological functions with the adjuvanticity of alum. J. Biol. Chemistry. 2012, 287 (21): 17152-17160.
  23. Williams A., Flavell R.A., Eisenbarth S.C. The role ofNOD-like Receptors in shaping adaptive immunity. Curr. Opin. Immunol. 2010, 22 (1): 34-40.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Kurbatova E.A., Akhmatov E.A., Akhmatova N.K., Vorobiev D.S., Egorova N.B., Baturo A.P., Romanenko E.E., Tsvetkov Y.E., Sukhova E.V., Yashunsky D.V., Nifantiev N.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies