CELL ANALOGS OF VIRAL PROTEINS


Cite item

Full Text

Abstract

Horizontal transfer of genes between viruses and their hosts played an important role in the evolution of various eukaryotes including contemporary mammals as well as the pathogens themselves. Elements of viruses of various types can be found in the genome of animals. Endogenous retroviral elements composing up to 8% of human genome length not only determine its high flexibility and rapid adaptation potential. Many of virus genes such as Fv1, Lv1, Lv2 being analogues of capsid and other proteins determine effective suppression of viral replication after cell penetration by the causative agent. Introduction of these elements into genome of a wide variety of animals from fish to primates could have taken place against the background of global natural cataclysms of viral origin. Integration of retrovirus genes coding surface glycoproteins with immunosuppressing domains into genetic apparatus of animals served as an impetus to the development of viviparity and spread of placental mammals. Their cell analogs syncytins perform a dual function: take direct part in the formation of syncytiotro-phoblast layer of placenta and ensure tolerance of immune system of mother to embryo. The acquisition of cell genes by viruses also played an important role in their evolution: various interleukins and other modulators of immune response introduced into viral genome from cell genetic apparatus became one of the most important factors of pathogenicity of a wide variety of causative agents including poxviruses, cytomegalovirus, Epstein-Barr virus and many others. Evolutionary pathways of the virus and host are thus inseparable from each other, and character of one of these directions is largely dictated by the vector of another.

About the authors

V. M Blinov

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

V. Gaisler

Panagen Ltd., Gorno-Altaysk, Russia

G. S Krasnov

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

A. V Shargunov

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

M. A Shurdov

Panagen Ltd., Gorno-Altaysk, Russia

V. V Zverev

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

References

  1. Блинов В.М., Тотменин А.В., Ресенчук С.М. и др. Изучение структурно-функциональной организации генома вируса натуральной оспы. Секвенирование и анализ последовательности нуклеотидов правого конца генома штамма Индия-1967. Молекулярная биология. 1995, 29 (4): 772-89.
  2. Блинов В.М., Щелкунов С.Н., Сандахчиев Л.С. Возможный молекулярный фактор, обусловливающий генерализацию инфекции вирусом натуральной оспы. Доклады РАН. 1993, 238 (1): 109-111.
  3. Щелкунов С.Н., Блинов В.М., Ресенчук С.М. и др. Семейство анкиринподобных белков ортопоксвирусов. Доклады РАН. 1993, 328 (2): 256-258.
  4. Щелкунов С.Н., Маренникова С.С., Блинов и др. Полная кодирующая последовательность генома вируса натуральной оспы. Доклады РАН. 1993, 328 (5): 629-632.
  5. Baldo A.M., McClure M.A. Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts. J. Virol. 1999, 73 (9): 7710-7721.
  6. Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: multiple integrations of ancient bor-navirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 2010, 6 (7): e1001030.
  7. Bukreyev A., Volchkov YE., Blinov YM., Netesov S.V. The GP-protein of Marburg virus contains the region similar to the 'immunosuppressive domain' of oncogenic retrovirus P15E proteins. FEBS Lett. 1993, 323 (1-2): 183-187.
  8. Chen C.P., Chen L.F, Yang S.R. et al. Functional characterization of the human placental fu-sogenic membrane protein syncytin 2. Biol. Reprod. 2008, 79 (5): 815-823.
  9. Cheynet V., Ruggieri A., Oriol G. et al. Synthesis, assembly, and processing of the Env ERVWE1/ syncytin human endogenous retroviral envelope. J. Virol. 2005, 79 (9): 5585-5593.
  10. Cornelis G., Heidmann O., Bernard-Stoecklin S. et al. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc. Natl. Acad. Sci. USA. 2012, 109 (7): E432-441.
  11. Couper K.N., Blount D.G., Riley E.M. IL-10: the master regulator of immunity to infection. J. Immunol. 2008, 180 (9): 5771-5777.
  12. Da Silva M., Upton C. Host-derived pathogenicity islands in poxviruses. Virol. J. 2005, 2: 30.
  13. de Silva S., Wu L. TRIM5 acts as more than a retroviral restriction factor. Viruses. 2011, 3 (7): 1204-1209.
  14. Diaz-Griffero F., Perron M., McGee-Estrada K. et al. A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 2008, 378 (2): 233-242.
  15. Drummond A.J., Ho S.Y, Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4 (5): e88.
  16. Ewing R.M., Chu P., Elisma F. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 2007, 3: 89.
  17. Garcia-Montojo M., Dominguez-Mozo M., Arias-Leal A. et al. The DNA copy number of human endogenous retrovirus-w (msrv-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity. PLoS One. 2013, 8 (1): e53623.
  18. Geuking M.B., Weber J., Dewannieux M. et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009, 323 (5912): 393-396.
  19. Gilbert C., Feschotte C. Genomic fossils calibrate the long-term evolution ofhepadnaviruses. PLoS Biol. 2010, 8 (9): e2613.
  20. Gorbalenya A.E., Donchenko A.P., Koonin E.Y, Blinov YM. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res. 1989, 17 (10): 38893897.
  21. Gorbalenya A.E., Koonin E.Y, Donchenko A.P., Blinov YM. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989, 17 (12): 4847-4861.
  22. Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov YM. Two related superfamilies ofputative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989, 17 (12): 4713-4730.
  23. Grutter M.G., Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr. Opin. Virol. 2012, 2 (2): 142-150.
  24. Haraguchi S., Good R.A., Day-Good N.K. A potent immunosuppressive retroviral peptide: cytokine patterns and signaling pathways. Immunol. Res. 2008, 41 (1): 46-55.
  25. Harrell R.A., Cianciolo G.J., Copeland T.D. et al. Suppression of the respiratory burst of human monocytes by a synthetic peptide homologous to envelope proteins of human and animal retroviruses. J. Immunol. 1986, 136 (10): 3517-3520.
  26. Harrison I.P., McKnight A. Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2. Virology. 2011, 415 (1): 47-55.
  27. Hatziioannou T., Cowan S., Goff S.P. et al. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J. 2003, 22 (3): 385-394.
  28. Holder B.S., Tower C.L., Forbes K. et al. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology. 2012, 136 (2): 184-191.
  29. Holder B.S., Tower C.L., Jones C.J. et al. Heightened proinflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol. Reprod. 2012, 86 (4): 103.
  30. Holmes E.C. Molecular clocks and the puzzle of RNA virus origins. J. Virol. 2003, 77 (7): 38933897.
  31. Horie M., Honda T., Suzuki Y. et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010, 463 (7277): 84-87.
  32. Horie M., Tomonaga K. Non-retroviral fossils in vertebrate genomes. Viruses. 2011, 3 (10): 18361848.
  33. Hughes A.L., Friedman R. Poxvirus genome evolution by gene gain and loss. Mol. Phylogenet. Evol. 2005, 35 (1): 186-195.
  34. Jern P., Coffin J.M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 2008, 42: 709-32.
  35. Jin M.J., Hui H., Robertson D.L. et al. Mosaic genome structure of simian immunodeficiency virus from west African green monkeys. EMBO J. 1994, 13 (12): 2935-2947.
  36. Kapoor A., Simmonds P., Lipkin WI. Discovery and characterization of mammalian endogenous parvoviruses. J. Virol. 2010, 84 (24): 12628-12635.
  37. Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010, 6 (11): e1001191.
  38. Kazazian H.H., Jr. Mobile elements: drivers of genome evolution. Science. 2004, 303 (5664): 16261632.
  39. Keele B.F., Van Heuverswyn F, Li Y. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006, 313 (5786): 523-526.
  40. Kobayashi Y., Horie M., Tomonaga K., Suzuki Y No evidence for natural selection on endogenous borna-like nucleoprotein elements after the divergence of Old World and New World monkeys. PLoS One. 2011, 6 (9): e24403.
  41. Leroy E.M., Kumulungui B., Pourrut X. et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005, 438 (7068): 575-576.
  42. Mangeney M., Renard M., Schlecht-LoufG. et al. Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc. Natl. Acad. Sci. USA. 2007, 104 (51): 20534-20539.
  43. Maori E., Lavi S., Mozes-Koch R. et al. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and interspecies recombination. J. Gen. Virol. 2007, 88 (12): 3428-3438.
  44. Mohan G.S., Li W, Ye L. et al. Antigenic subversion: a novel mechanism of host immune evasion by Ebola virus. PLoS Pathog. 2012, 8 (12): e1003065.
  45. Monier A., Pagarete A., de Vargas C. et al. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res. 2009, 19 (8): 1441-1449.
  46. Ogasawara M., Haraguchi S., Cianciolo G.J. et al. Inhibition of murine cytotoxic T lymphocyte activity by a synthetic retroviral peptide and abrogation of this activity by IL. J. Immunol. 1990, 145 (2): 456-462.
  47. Panaro M.A., Calvello R., Lisi S. et al. Chemokine receptor-related viral protein products. Immunopharmacol Immunotoxicol. 2010, 32 (1): 17-27.
  48. Pertel T., Hausmann S., Morger D. et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 2011, 472 (7343): 361-365.
  49. Pond S.L., Murrell B., Poon A.F. Evolution of viral genomes: interplay between selection, recombination, and other forces. Methods Mol. Biol. 2012, 856; 239-272.
  50. Rappoport N., Linial M. Viral proteins acquired from a host converge to simplified domain architectures. PLoS Comput. Biol. 2012, 8 (2): e1002364.
  51. Schmitz C., Marchant D., Neil S.J. et al. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 2004, 78 (4): 2006-2016.
  52. Shackelton L.A., Rambaut A., Pybus O.G., Holmes E.C. JC virus evolution and its association with human populations. J. Virol. 2006, 80 (20): 9928-9933.
  53. Sharon I., Tzahor S., Williamson S. et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007, 1 (6): 492-501.
  54. Sharp P.M., Simmonds P. Evaluating the evidence for virus/host co-evolution. Curr. Opin. Virol. 2011, 1 (5): 436-441.
  55. Shchelkunov S.N., Blinov V.M., Sandakhchiev L.S. Genes ofvariola and vaccinia viruses necessary to overcome the host protective mechanisms. FEBS Lett. 1993, 319 (1-2): 80-83.
  56. Switzer W.M., Salemi M., Shanmugam V et al. Ancient co-speciation of simian foamy viruses and primates. Nature. 2005, 434 (7031): 376-380.
  57. Taylor D.J., Leach R.W, Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol. Biol. 2010, 10: 193.
  58. Taylor W.R., Stoye J.P. Consensus structural models for the amino terminal domain of the retrovirus restriction gene Fv1 and the murine leukaemia virus capsid proteins. BMC Struct. Biol. 2004, 4: 1.
  59. Tolosa J.M., Schjenken J.E., Clifton V.L. et al. The endogenous retroviral envelope protein syncy-tin-1 inhibits LPS/PHA-stimulated cytokine responses in human blood and is sorted into placental exosomes. Placenta. 2012, 33 (11): 933-941.
  60. Tomonaga K., Kobayashi T., Ikuta K. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 2002, 4 (4): 491-500.
  61. Towers G., Bock M., Martin S. et al. A conserved mechanism of retrovirus restriction in mammals. Proc. Natl. Acad. Sci. USA. 2000, 97 (22): 12295-12299.
  62. Towers G., Collins M., Takeuchi Y. Abrogation of Ref1 retrovirus restriction in human cells. J. Virol. 2002, 76 (5): 2548-2550.
  63. Ulm J.W, Perron M., Sodroski J. et al. Complex determinants within the Moloney murine leukemia virus capsid modulate susceptibility of the virus to Fv1 and Ref1-mediated restriction. Virology 2007, 363 (2): 245-255.
  64. Volchkov YE., Blinov V.M., Netesov S.V The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Lett. 1992, 305 (3): 181184.
  65. Watanabe S., Noda T., Kawaoka Y Functional mapping of the nucleoprotein of Ebola virus. J. Virol. 2006, 80 (8): 3743-3751.
  66. Wolfe N.D., Switzer W.M., Carr J.K. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet. 2004, 363 (9413): 932-937.
  67. Worobey M., Holmes E.C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 1999, 80 (10): 2535-2543.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Blinov V.M., Gaisler V., Krasnov G.S., Shargunov A.V., Shurdov M.A., Zverev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies