PSEUDOMONAS AERUGINOSA RECOMBINANT PROTEINS: EFFECT ON MICE CYTOKINE PROFILE


Cite item

Full Text

Abstract

Aim. Study cytokine-mediated immune response in mice vaccinated with Pseudomonas aeruginosa recombinant antigen preparations. Materials and methods. Cytokine-mediated immune response was studied in mice vaccinated with membrane recombinant proteins OprF, OprL, a hybrid recombinant protein OprF-I consisting of sequences of OprF and OprI proteins and a recombinant atoxic form of exotoxin A with a deletion of106 amino acid sequences (recombinant anatoxin - aTox) of P. aeruginosa. Results. An induction of a wide specter of studied cytokines was detected in the mice. The highest level was observed for IL-1 and IL-6 after administration of recombinant proteins OprL, OprF, OprF-I, aTox. OprF-I actively stimulated production of IL-2 that is a factor of growth and differentiation of lymphocytes, natural killers and cytotoxic lymphocytes; as well as IL-5, IL-10, TNF-a and IFN-y. Recombinant protein OprF-I facilitated induction of IL-6, IL-17, TNF-a and IFN-y, whereas aTox - expression of IL-1, IL-2, IFN-y. Recombinant protein OprL induced IL-17 synthesis to the most extent and TNF-a and IL-10 - moderately. Conclusion. The P. aeruginosa recombinant proteins obtained during intraperitoneal administration to mice facilitated formation of immune response with the direction of induction in both Th1 and Th2 pathways.

About the authors

A. V Soldatenkova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

L. A Geiderova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

N. K Akhmatova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

N. A Mikhailova

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

References

  1. Гатыпова Е.В., Злыгостев С.А., Калошин А.А., Михайлова Н.А. Исследование иммунобиологических свойств рекомбинантного белка OprL наружной мембраны Pseudomonas aeruginosa. Вестник РАМН. 2009, 4: 25-28.
  2. Егорова Н.Б., Ахматова Н.К., Чертов И.В. и др. Влияние разных методов введения антигенов условно патогенных бактерий на субпопуляционную структуру и функциональную активность иммунокомпетентных клеток селезенки, кишечника и регионарных лимфатических узлов. Молекулярная медицина. 2009, 5: 48-54.
  3. Калошин А.А., Исаков М.А., Михайлова Н.А., Вертиев Ю.В. Получение рекомбинантной атоксической формы экзотоксина А Pseudomonas aeruginosa. БЭБИМ. 2012, 134 (9): 330335.
  4. Калошин А.А., Михайлова Н.А., Леонова Е.И. Получение гибридного белка OprF-OprI Pseudomonas aeruginosa. Журн. микробиол. 2012, 3: 35-43.
  5. Chen K., Cerutti A. Vaccination strategies to promote mucosal antibody responses. Immunity. 2010, 33: 479-491.
  6. Chen K., McAleer J.P., Lin Y et al. Th17 cells mediate clade-specific, serotype-independent mucosal immunity. Immunity. 2011, 35: 997-1009.
  7. Cohen T.S., Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat. Med. 2012, 18 (4): 509-519.
  8. Donta S.T., Peduzzi P., Cross A.S. et al. Immunoprophylaxis against Klebsiella and Pseudomonas aeruginosa infections. The federal hyperimmune immunoglobulin trial study group. J. Infect. Dis. 1996, 174: 537-543.
  9. Doring G., Meisner C., Stern M. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA. 2007, 104: 11020-11025.
  10. Fisher J.T., Zhang Y, Engelhardt J.F Comparative biology ofcystic fibrosis animal models. Methods Mol. Biol. 2011, 742: 311-334.
  11. Kaloshin A.A., Gatypova E.V, Mikhailova N.A. Obtaining recombinant forms of outer membrane protein (OprF) of Pseudomonas aeruginosa and assessment of their immunogenic properties. Appl. Biochemistry and Microbiology. 2011, 47 (8): 780-788.
  12. Koh AY, Priebe G.P., Ray C. et al. Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect. Immun. 2009, 77: 5300-5310.
  13. Krause A., Whu WZ., Xu Y et al. Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF Vaccine. 2011, 29: 2131-2139.
  14. Krause K., Metz M., Makris M. et al. The role of interleukin-1 in allergy-related disorders. Curr. Opin. Allergy Clin. Immunol. 2012, 12 (5): 477-484.
  15. Leal I.S., Florido M., Andersen P., Appelberg R. Interleukin-6 regulates the phenotype of the immune response to a tuberculosis subunit vaccine. Immunol. 2001, 103: 375-381.
  16. Mueller-Ortiz S.L., Drouin S.M., Wetsel R.A. The alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect. Immun. 2004, 72: 2899-2906.
  17. Nieuwenhuis E.E., Matsumoto T., Exley A. et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 2002, 8: 588-593.
  18. Pier G.B., Boyer D., Preston M. et al. Human monoclonal antibodies to Pseudomonas aeruginosa alginate that protect against infection by both mucoid and nonmucoid strains. J. Immunol. 2004, 1736: 5671-5678.
  19. Priebe G.P., Walsh R.L, Cederroth T.A. et al. IL-17 is a critical component of vaccine-induced protection against lung infection by lipopolysaccharide-heterologous strains of Pseudomonas aeruginosa. J. Immunol. 2008, 181: 4965-4975.
  20. Sharma A., Krause A., Worgall, S. Recent developments for Pseudomonas vaccines. Hum. Vac. 2011, 7: 999-1011.
  21. Shupp J.W, Pavlovich A.R., Jeng J.C. et al. Epidemiology ofbloodstream infections in burn-injured patients: a review of the national burn repository. J. Burn Care Res. 2010, 31: 521-528.
  22. Sorichter S., Baumann U., Baumgart A. et al. Immune responses in the airways by nasal vaccination with systemic boosting against Pseudomonas aeruginosa in chronic lung disease. Vaccine. 2009, 27: 2755-2759.
  23. Sun H.Y., Fujitani S., Quintiliani R. et al. Pneumonia due to Pseudomonas aeruginosa: part II: antimicrobial resistance, pharmacodynamic concepts, and antibiotic therapy. Chest. 2011, 139: 1172-1185.
  24. Tan H.L., Regamey N., Brown S. et al. The Th17 pathway in cystic fibrosis lung disease. Am. J. Resp. Crit. Care Med. 2011, 184: 252-258.
  25. Worgall S. 40 years on: have we finally got a vaccine for Pseudomonas aeruginosa? Future Microbiology 2012, 7 (12): 1333-1335.
  26. Wu W, Huang J., Duan B. et al. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am. J. Resp. Crit. Care Med. 2012, 186: 420-427.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Soldatenkova A.V., Geiderova L.A., Akhmatova N.K., Mikhailova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies