STRAIN DIFFERENCES OF INTRA-SPECIES IMMUNOGENIC ACTIVITY OF STREPTOCOCCUS PNEUMONIAE ANTIGEN COMPONENTS


Cite item

Full Text

Abstract

Aim. Study intra-species immunogenic activity ofantigenic protein-polysaccharide components of S. pneumoniae. Materials and methods. Antigenic components of serotype 3, 6А, 6В, 14, 10А, 18А, 19А, 19F, 23F and unencapsulated S. pneumoniae strains were obtained by water extraction method. Synthetic hexasaccharide - corresponding to the structure of S. pneumoniae serotype 14 capsule polysaccharide repeated unit chain fragment was used as a reference preparation. Molecular mass of antigenic components was determined in SDS-electrophoresis. Antibody titers in blood sera of immunized mice were evaluated by solid-phase EIA method. Protective activity of preparations was studied in mice after 2 immunizations with consequent infection by virulent S. pneumoniae serotype 3 and 6B strains. Results. Preparations from serotype 6А, 6В, 14, 19А, 19F, 23F strains in reaction with anti-microbial sera were characterized by cross serologic activity (IgG titers of 1200 - 12 800). The lowest serologic activity was detected in S. pneumoniae serotype 3 and unencapsulated strain preparations. Conjugate of synthetic hexasaccharide and bovine serum albumin interacted only with homologous antimicrobial sera up to titers of 600+89.4 and did not react with sera against serotypes 19A and 19F. Cross serologic activity of preparations is probably determined by the presence of protein fractions that were detected in SDS-electrophoresis. This is confirmed by high intra-species cross protective activity of preparations from serotype 6B and 10A strains that protect 90 - 100% of mice from infection by heterologous S. pneumoniae strains. Conclusion. Use of strains with cross antigenic and protective activity for production of immunogenic protein-containing fractions with the aim ofenchanting and broadening specter ofprotective activity of vaccine preparations that are constructed based on capsule polysaccharides of S. pneumoniae is appropriate.

About the authors

E. A Kurbatova

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

D. S Vorobiev

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

N. B Egorova

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

A. P Baturo

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

E. E Romanenko

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

M. E Markova

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

S. I Elkina

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

Yu. V Volokh

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

Yu. E Tsvetkov

Zelinsky Institute of Organic Chemistry, Moscow, Russia

E. V Sukhova

Zelinsky Institute of Organic Chemistry, Moscow, Russia

D. V Yashunsky

Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

N. E Nifantiev

Zelinsky Institute of Organic Chemistry, Moscow, Russia

N. A Mikhailova

Mechnikov Research Institute of Vaccines and Sera; 2Zelinsky Institute of Organic Chemistry; 3Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

References

  1. Ванеева Н.П., Воробьев Д.С., Грищенко Н.В. и др. Изучение перекрестной активности антигенных препаратов Streptococcus pneumoniae. Журн. микробиол. 2012, 5: 36-42.
  2. Курбатова Е.А., Воробьев Д.С., Семенова И.Б. и др. разработка подходов к созданию экспериментальной тест-системы для оценки антигенной активности синтетических олигосахаридных лигандов, родственных фрагментам цепи капсульного полисахарида Streptococcus pneumoniae типа 14. Биохимия. 2013, 7: 1046-1052.
  3. Клинико-иммунологические аспекты применения поликомпонентной пневмококковой вакцины «Пневмо 23» у детей с атопической бронхиальной астмой. Методические рекомендации МЗ РФ. Владивосток, 2004.
  4. Резолюция заседания общественного координационного совета по пневмококковой инфекции в России. Эпидемиология и инфекционные болезни, актуальные вопросы. 2012, 5: 82-83.
  5. Харит С.М. Пневмококковые вакцины. В: Вакцины и вакцинация: национальное руководство. В.В. Зверев, Б.Ф.Семенов, Р.М.Хаитов (ред.). М., ГЭОТАР-Медиа, 2011.
  6. Dubois K., Gillers K.A., Hamilton J.K. et al. Colometric method for the determination of sugars. Annal. Chem. 1956, 28: 350-354.
  7. Hicks L.A., Harison L.H., Flannery B. et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era ofwidespread PCV7 vaccination. 1998-2004. J. Infect.Dis. 2007, 196 : 1346-1354.
  8. Jansen WT., Snippe H. Short-chain oligosaccharide protein conjugates as experimental pneumococcal vaccines. Indian J. Med. Res. 2004, 119 (l): 7-12.
  9. Konen-Waisman S., Cohen A., Fridkin M., Cohen I.R. Self heat-shock protein (hsp60) peptide serves in a conjugate vaccine against a lethal pneumococcal infection. J. Infect. Dis.1999, 179: 403413.
  10. Laemmli U.K. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature. 1970, 227: 680-685.
  11. Lowry O.H., Rosebrought N.F., Farr A.L., Handale R.I. Protein measurement with the Folin-reagent. J. Biol. Chem. 1951, 193: 265-271.
  12. Nurkka A., Ahman H., Korkeila N. et al. Serum and salivary anti-capsular antibodies in infants and children immunized with the heptavalent pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 2001, 20: 25-33.
  13. Pelton S.I., Huot H., Finkelstein J. A. et al. Emergence of 19A as virulent and multidrug resistant pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 2007, 26 (6): 468-472.
  14. Poland G.A. The prevention of pneumococcal disease by vaccines: promises and challenges. Infect. Dis. Clin. Nort. Am. 2001, 15: 97-122.
  15. Reinert R.R. Pneumococcal conjugate vaccines - a European perspective. Int. J. Med. Microbiol. 2004, 294 (5): 277-294.
  16. Safari D., Dekker H.A.T., Joosten A.F. Identification of the smallest structure capable of evoking opsonophagocytic antibodies against S. pneumoniae type 14. Infection and Immunity. 2008, 76 (10) : 4615-4623.
  17. Wuorima T., Kayhty H., Eskola J. et al. Activation of cell-mediated immunity following immunization with neumococcal conjugate or polysaccharide vaccine. Scand. J. Immunol. 2001, 53: 422428.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Kurbatova E.A., Vorobiev D.S., Egorova N.B., Baturo A.P., Romanenko E.E., Markova M.E., Elkina S.I., Volokh Y.V., Tsvetkov Y.E., Sukhova E.V., Yashunsky D.V., Nifantiev N.E., Mikhailova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies