EFFECT OF PSEUDOMONAS AERUGINOSA EXOMETABOLITES ON PLANKTONIC AND BIOFILMCULTURES OF ESCHERICHIA COLI


Cite item

Full Text

Abstract

Aim. Study the effect of P. aeruginosa exometabolites on planktonic and biofilm cultures of bioluminescent
E. coli strain. Materials and methods. E. coli K12 TG1 (pF1 lux+ Apr) recombinant bioluminescent strain, P.
aeruginosa АТСС 27853 reference strain and 2 nosocomial isolates were used. Pyocyanin and pyoverdin
content in supernatant of P. aeruginosa over-night cultures was evaluated according to E. Deziel et al. (2001).
Planktonic and biofilm cultures of E. coli were obtained in 96-well plates (LB, statically, 37C), optical density
of plankton, film biomass (OD600, OD580) and bioluminescence in plankton and biofilm were evaluated
in microplate reader Infiniti M200 (Tecan, Austria). Results. P. aeruginosa exometabolites increased the
duration of lag-phase in E. coli, and short term exposition inhibited luminescence of planktonic cells. These
effects are determined by bactericidal action of pyocyanin and pyoverdin. Supernatants of over-night cultures
of P. aeruginosa inhibit formation of biofilm and disrupt the formed biofilm of E. coli. Effect of pyocyanin
and pyoverdin on these processes is not established, other factors may have higher significance. Conclusion.
Bioluminescence of E. coli K12 TG1 that reflects the energetic status of the cell allows to evaluate and prognose
the character of coexistence of P. aeruginosa in combined with E. coli planktonic and biofilm culture.

About the authors

M V Kuznetsova

T I Karpunina

I L Maslennikova

L Yu Nesterova

V A Demakov

M V Kuznetsova

Research Institute of Ecology and Genetics of Microorganisms, PermPerm State Medical Academy, Russia

Research Institute of Ecology and Genetics of Microorganisms, PermPerm State Medical Academy, Russia

T I Karpunina

Perm State Medical Academy, Russia

Perm State Medical Academy, Russia

I L Maslennikova

Research Institute of Ecology and Genetics of Microorganisms, Perm

Research Institute of Ecology and Genetics of Microorganisms, Perm

L Yu Nesterova

Research Institute of Ecology and Genetics of Microorganisms, Perm

Research Institute of Ecology and Genetics of Microorganisms, Perm

V A Demakov

Research Institute of Ecology and Genetics of Microorganisms, Perm

Research Institute of Ecology and Genetics of Microorganisms, Perm

References

  1. Бухарин О.В., Лобакова Е.С., Немцева Н.В., Черкасов С.В. Ассоциативный симбиоз. Екатеринбург, УрО РАН, 2007.
  2. Данилов В.С., Зарубина А.П., Ерошникова Г.Е. и др. Сенсорные биолюминесцентные системы на основе lux-оперонов разных видов люминесцентных бактерий. Вестник МГУ. Серия 16. Биология. 2002, 3: 20-24.
  3. Николаев Ю.А., Проссер Дж.И. Свойства адгезина и антиадгезина Pseudomonas fluorescens. Микробиология. 2000, 69 (2): 237-242.
  4. Davies D.G., Marques C.N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 2009, 191: 1393-1403.
  5. Deziel E., Comeau Y., Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 2001, 183 (4): 1195-1204.
  6. Irie Y., O'Toole G.A., Yuk M.H. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 2005, 250: 237-243.
  7. Li Z., Wang X., Guo Y., Zhao J. Inhibitory action of metabolites of Pseudomonas aeruginosa against gram-negative bacteria. J. Jap. Ass. Infect. Dis.1995, 69 (8): 924-927.
  8. Lopes S.P., Machado I.M., Pereira M.O. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships. J. Ind. Microbiol. Biotechnol. 2011, 38 (1): 133-140.
  9. Naves P., del Prado G., Huelves L. et al. Correlation between virulence factors and in vitro biofilm formation by Escherichia coli. Microb. Pathog. 2008, 45: 86-91.
  10. O`Toole G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, 54: 49-79.
  11. Parveen A., Smith G., Salisbury V., Nelson S.M. Biofilm culture of Pseudomonas aeruginosa expressing lux genes as a model to study susceptibility to antimicrobials. FEMS Microbiol. Lett. 2001, 199 (1): 115-118.
  12. Simon L., Fremaux C., Cenatiempo Y. et al. Luminescent method for the detection of antibacterial activities. Appl. Microbiol. Biotechnol. 2001, 57 (5-6): 757-763.
  13. Smith V.H. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002, 81: 99-106.
  14. Valle J., Da Re S., Henry N. et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl. Acad. Sci. USA. 2006, 103: 12558-12563.
  15. Watanabe B.K., Sakai Y., Takezaki T., Ogawa A. Bacterial interference in mixed infection in the rat. Urologia Internationalis. 1988, 43(1): 2-6.
  16. Williams J.S. Characterization of bioactive secondary metabolites from Pseudomonas aeruginosa and Porocentrum species. Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science. 2003.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Kuznetsova M.V., Karpunina T.I., Maslennikova I.L., Nesterova L.Y., Demakov V.A., Kuznetsova M.V., Karpunina T.I., Maslennikova I.L., Nesterova L.Y., Demakov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies