EFFECT OF PSEUDOMONAS AERUGINOSA EXOMETABOLITES ON PLANKTONIC AND BIOFILMCULTURES OF ESCHERICHIA COLI
- Authors: Kuznetsova MV1, Karpunina TI1, Maslennikova IL1, Nesterova LY.1, Demakov VA1, Kuznetsova MV2, Karpunina TI3, Maslennikova IL4, Nesterova LY.4, Demakov VA4
-
Affiliations:
- Research Institute of Ecology and Genetics of Microorganisms, PermPerm State Medical Academy, Russia
- Perm State Medical Academy, Russia
- Research Institute of Ecology and Genetics of Microorganisms, Perm
- Issue: Vol 89, No 6 (2012)
- Pages: 17-22
- Section: Articles
- Submitted: 09.06.2023
- Published: 15.12.2012
- URL: https://microbiol.crie.ru/jour/article/view/13698
- ID: 13698
Cite item
Full Text
Abstract
E. coli strain. Materials and methods. E. coli K12 TG1 (pF1 lux+ Apr) recombinant bioluminescent strain, P.
aeruginosa АТСС 27853 reference strain and 2 nosocomial isolates were used. Pyocyanin and pyoverdin
content in supernatant of P. aeruginosa over-night cultures was evaluated according to E. Deziel et al. (2001).
Planktonic and biofilm cultures of E. coli were obtained in 96-well plates (LB, statically, 37C), optical density
of plankton, film biomass (OD600, OD580) and bioluminescence in plankton and biofilm were evaluated
in microplate reader Infiniti M200 (Tecan, Austria). Results. P. aeruginosa exometabolites increased the
duration of lag-phase in E. coli, and short term exposition inhibited luminescence of planktonic cells. These
effects are determined by bactericidal action of pyocyanin and pyoverdin. Supernatants of over-night cultures
of P. aeruginosa inhibit formation of biofilm and disrupt the formed biofilm of E. coli. Effect of pyocyanin
and pyoverdin on these processes is not established, other factors may have higher significance. Conclusion.
Bioluminescence of E. coli K12 TG1 that reflects the energetic status of the cell allows to evaluate and prognose
the character of coexistence of P. aeruginosa in combined with E. coli planktonic and biofilm culture.
About the authors
M V Kuznetsova
T I Karpunina
I L Maslennikova
L Yu Nesterova
V A Demakov
M V Kuznetsova
Research Institute of Ecology and Genetics of Microorganisms, PermPerm State Medical Academy, RussiaResearch Institute of Ecology and Genetics of Microorganisms, PermPerm State Medical Academy, Russia
T I Karpunina
Perm State Medical Academy, RussiaPerm State Medical Academy, Russia
I L Maslennikova
Research Institute of Ecology and Genetics of Microorganisms, PermResearch Institute of Ecology and Genetics of Microorganisms, Perm
L Yu Nesterova
Research Institute of Ecology and Genetics of Microorganisms, PermResearch Institute of Ecology and Genetics of Microorganisms, Perm
V A Demakov
Research Institute of Ecology and Genetics of Microorganisms, PermResearch Institute of Ecology and Genetics of Microorganisms, Perm
References
- Бухарин О.В., Лобакова Е.С., Немцева Н.В., Черкасов С.В. Ассоциативный симбиоз. Екатеринбург, УрО РАН, 2007.
- Данилов В.С., Зарубина А.П., Ерошникова Г.Е. и др. Сенсорные биолюминесцентные системы на основе lux-оперонов разных видов люминесцентных бактерий. Вестник МГУ. Серия 16. Биология. 2002, 3: 20-24.
- Николаев Ю.А., Проссер Дж.И. Свойства адгезина и антиадгезина Pseudomonas fluorescens. Микробиология. 2000, 69 (2): 237-242.
- Davies D.G., Marques C.N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 2009, 191: 1393-1403.
- Deziel E., Comeau Y., Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 2001, 183 (4): 1195-1204.
- Irie Y., O'Toole G.A., Yuk M.H. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 2005, 250: 237-243.
- Li Z., Wang X., Guo Y., Zhao J. Inhibitory action of metabolites of Pseudomonas aeruginosa against gram-negative bacteria. J. Jap. Ass. Infect. Dis.1995, 69 (8): 924-927.
- Lopes S.P., Machado I.M., Pereira M.O. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships. J. Ind. Microbiol. Biotechnol. 2011, 38 (1): 133-140.
- Naves P., del Prado G., Huelves L. et al. Correlation between virulence factors and in vitro biofilm formation by Escherichia coli. Microb. Pathog. 2008, 45: 86-91.
- O`Toole G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, 54: 49-79.
- Parveen A., Smith G., Salisbury V., Nelson S.M. Biofilm culture of Pseudomonas aeruginosa expressing lux genes as a model to study susceptibility to antimicrobials. FEMS Microbiol. Lett. 2001, 199 (1): 115-118.
- Simon L., Fremaux C., Cenatiempo Y. et al. Luminescent method for the detection of antibacterial activities. Appl. Microbiol. Biotechnol. 2001, 57 (5-6): 757-763.
- Smith V.H. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002, 81: 99-106.
- Valle J., Da Re S., Henry N. et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl. Acad. Sci. USA. 2006, 103: 12558-12563.
- Watanabe B.K., Sakai Y., Takezaki T., Ogawa A. Bacterial interference in mixed infection in the rat. Urologia Internationalis. 1988, 43(1): 2-6.
- Williams J.S. Characterization of bioactive secondary metabolites from Pseudomonas aeruginosa and Porocentrum species. Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science. 2003.