SURFACE STRUCTURES OF GRAM-POSITIVE BACTERIA IN INTERCELLULAR INTERACTION AND FILM FORMATION


Cite item

Full Text

Abstract

Full Text

ПОВЕРХНОСТНЫЕ СТРУКТУРЫ ГРАМПОЗИТИВНЫХ БАКТЕРИЙ В МЕЖКЛЕТОЧНОМ ВЗАИМОДЕЙСТВИИ И ПЛЕНКООБРАЗОВАНИИ
×

About the authors

V. G Melnikov

International Scientific and Technical Center, Moscow, Russia

References

  1. Ильина Т.С., Романова Ю.М., Гинцбург А.Л. Биопленки как способ существования бактерий в окружающей среде и организме хозяина: феномен, генетический контроль и системы регуляции. Генетика. 2004, 40 (11): 1-12.
  2. Комбарова С.Ю., Борисова О.Ю., Мельников В.Г. и др. Полиморфизм генов tox и dtxR у циркулирующих штаммов Corynebacterium diphtheriae. Журн. микробиол. 2009, 1: 7-11.
  3. Комбарова С.Ю., Мазурова И.К., Мельников В.Г. и др. Комплексная система наблюдения за циркулирующими штаммами Corynebacterium diphtheriae. М., 2004.
  4. Мазурова И.К., Мельников В.Г., Комбарова С.Ю. и др. Лабораторная диагностика дифтерийной инфекции. Метод. указ. М., МЗ РФ, 1998.
  5. Олейник И.И., Мельников В.Г. Роль актиномицетов в развитии патологических процессов в полости рта. Стоматология. 1990, 69 (1): 92-95.
  6. Рыбальченко О.В. Электронно-микроскопическое исследование межклеточных взаимодействий микроорганизмов при антагонистическом характере взаимоотношений. Микробиология. 2006, 75 (4): 550-555.
  7. Рыбальченко О.В., Бондаренко В.М., Добрица В.П. Атлас ультраструктуры микробиоты кишечника человека. СПб, ВМА, 2008.
  8. Abbot E.L., Smith W.D., Siou G.P. et al. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell. Microbiol. 2007, 9: 1822-1833.
  9. Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA. 2007,104: 5145-5150.
  10. Barocchi M.A., Ries J., Zogaj X. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Ibid. 2006, 103: 2857-2862.
  11. Budzik J.M., Marraffini L.A., Schneewind O. Assembly of pili on the surface of Bacillus cereus vegetative cells. Mol. Microbiol. 2007, 66: 495-510.
  12. Burne R.A. Oral streptococci and its products of their environment. J. Dent. Res. 1998, 77: 445-452.
  13. Cerdeno-Tarraga A.M., Efstratiou A., Dover L.G. et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucl. Acids Res. 2003, 31: 6516-6523.
  14. Chenna B.C., Shinkre B.A., King J.R. et al. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus sortase A. Bioorg. Med. Chem. Lett. 2008, 18: 380-385.
  15. Dramsi S., Caliot E., Bonne I. et al. Assembly and role of pili in group B streptococci. Mol. Microbiol. 2006, 60: 1401-1413.
  16. Gaspar A.H., Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J. Bacteriol. 2006, 188: 1526-1533.
  17. Hadfield T.L., McEvoy P., Polotsky Y. et al. The pathology of diphtheria. J. Infect. Dis. 2000, 181 (1): S116-120.
  18. Holmes R.K. Biology and molecular epidemiology of diphtheria toxin and the tox gene. Idid.: 156-167.
  19. Kolenbrander P.E. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 2000, 54: 413-437.
  20. Krishnan V., Gaspar A.H., Ye N. et al. An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. Structure, 2007, 15: 893-903.
  21. Lasa I. Towards the identification of the common features of bacterial biofilm development. Int. Microbiol. 2006, 9: 21-28.
  22. Lasa I., Penades J.R. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 2006,157: 99-107.
  23. Leavis H., Top J., Shankar N. et al. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J. Bacteriol. 2004, 186: 672-682.
  24. Lindahl G., Stalhammar-Carlemalm M., Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin. Microbiol. Rev. 2005, 18: 102-127.
  25. Maisey H.C., Hensler M., Nizet V. et al. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J. Bacteriol. 2007, 189: 1464-1467.
  26. Mandlik A., Swierczynski A., Das A. et al. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 2007, 64: 111-124.
  27. Mandlik A., Swierczynski A., Das A. et al. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008, 16: 33-40.
  28. Manetti A.G., Zingaretti C., Falugi F. et al. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol. Microbiol. 2007, 64: 968-983.
  29. Mishra A., Das A., Cisar J.O. et al. Sortasecatalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol. 2007, 189: 3156-3165.
  30. Nallapareddy S.R., Singh K.V., Sillanpaa J. et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Invest. 2006, 116: 2799-2807.
  31. Nelson A.L., Ries J., Bagnoli F. et al. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 2007, 66: 329-340.
  32. O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, 54: 49-79.
  33. Russel L.M., Holmes R.K. Highly toxinogenic but avirulent Park-Williams 8 strain of Corynebacterium diphtheriae does not produce siderophore. Infect. Immun. 1985, 47: 575-578.
  34. Saye D.E. Recurring and antimicrobial-resistant infections: considering the potential role of biofilms in clinical practice. Ostomy Wound Manage. 2007, 53: 46-62.
  35. Shapiro J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 1998, 52: 81-104.
  36. Stoodley P., Sauer K., Davies D.G. et al. Biofilms as complex differentiated communities. Ibid. 2002, 56: 187-209.
  37. Swierczynski A., Ton-That H. Type III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit. J. Bacteriol. 2000, 188, 6318–6325.
  38. Telford J.L., Barocchi M.A., Margarit I. et al. Pili in gram-positive pathogens. Nat. Rev. Microbiol. 2006, 4: 509-519.
  39. Ton-That H., Marraffini L.A., Schneewind O. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol. Microbiol. 2004, 53: 251-261.
  40. Ton-That H., Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae. Ibid. 2003, 50: 1429-1438.
  41. Ubeda C., Tormo M.A., Cucarella C. et al. Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Ibid. 2003, 49: 193-210.
  42. Varga J.J., Nguyen V., O’Brien D.K. et al. Type IV pili-dependent gliding motility in the Grampositive pathogen Clostridium perfringens and other Clostridia. Ibid. 2006, 62:680-694.
  43. Zong Y., Xu Y., Liang X. et al. A «Collagen Hug» model for Staphylococcus aureus CNA binding to collagen. EMBO J. 2005, 24: 4224-4236.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Melnikov V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies