ПОВЕРХНОСТНЫЕ СТРУКТУРЫ ГРАМПОЗИТИВНЫХ БАКТЕРИЙ В МЕЖКЛЕТОЧНОМ ВЗАИМОДЕЙСТВИИ И ПЛЕНКООБРАЗОВАНИИ
- Авторы: Мельников В.Г1
-
Учреждения:
- Международный научно-технический центр, Москва
- Выпуск: Том 87, № 2 (2010)
- Страницы: 119-123
- Раздел: Статьи
- Дата подачи: 09.06.2023
- Дата публикации: 15.04.2010
- URL: https://microbiol.crie.ru/jour/article/view/13558
- ID: 13558
Цитировать
Полный текст
Аннотация
Полный текст
ПОВЕРХНОСТНЫЕ СТРУКТУРЫ ГРАМПОЗИТИВНЫХ БАКТЕРИЙ В МЕЖКЛЕТОЧНОМ ВЗАИМОДЕЙСТВИИ И ПЛЕНКООБРАЗОВАНИИ×
Список литературы
- Ильина Т.С., Романова Ю.М., Гинцбург А.Л. Биопленки как способ существования бактерий в окружающей среде и организме хозяина: феномен, генетический контроль и системы регуляции. Генетика. 2004, 40 (11): 1-12.
- Комбарова С.Ю., Борисова О.Ю., Мельников В.Г. и др. Полиморфизм генов tox и dtxR у циркулирующих штаммов Corynebacterium diphtheriae. Журн. микробиол. 2009, 1: 7-11.
- Комбарова С.Ю., Мазурова И.К., Мельников В.Г. и др. Комплексная система наблюдения за циркулирующими штаммами Corynebacterium diphtheriae. М., 2004.
- Мазурова И.К., Мельников В.Г., Комбарова С.Ю. и др. Лабораторная диагностика дифтерийной инфекции. Метод. указ. М., МЗ РФ, 1998.
- Олейник И.И., Мельников В.Г. Роль актиномицетов в развитии патологических процессов в полости рта. Стоматология. 1990, 69 (1): 92-95.
- Рыбальченко О.В. Электронно-микроскопическое исследование межклеточных взаимодействий микроорганизмов при антагонистическом характере взаимоотношений. Микробиология. 2006, 75 (4): 550-555.
- Рыбальченко О.В., Бондаренко В.М., Добрица В.П. Атлас ультраструктуры микробиоты кишечника человека. СПб, ВМА, 2008.
- Abbot E.L., Smith W.D., Siou G.P. et al. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell. Microbiol. 2007, 9: 1822-1833.
- Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA. 2007,104: 5145-5150.
- Barocchi M.A., Ries J., Zogaj X. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Ibid. 2006, 103: 2857-2862.
- Budzik J.M., Marraffini L.A., Schneewind O. Assembly of pili on the surface of Bacillus cereus vegetative cells. Mol. Microbiol. 2007, 66: 495-510.
- Burne R.A. Oral streptococci and its products of their environment. J. Dent. Res. 1998, 77: 445-452.
- Cerdeno-Tarraga A.M., Efstratiou A., Dover L.G. et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucl. Acids Res. 2003, 31: 6516-6523.
- Chenna B.C., Shinkre B.A., King J.R. et al. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus sortase A. Bioorg. Med. Chem. Lett. 2008, 18: 380-385.
- Dramsi S., Caliot E., Bonne I. et al. Assembly and role of pili in group B streptococci. Mol. Microbiol. 2006, 60: 1401-1413.
- Gaspar A.H., Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J. Bacteriol. 2006, 188: 1526-1533.
- Hadfield T.L., McEvoy P., Polotsky Y. et al. The pathology of diphtheria. J. Infect. Dis. 2000, 181 (1): S116-120.
- Holmes R.K. Biology and molecular epidemiology of diphtheria toxin and the tox gene. Idid.: 156-167.
- Kolenbrander P.E. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 2000, 54: 413-437.
- Krishnan V., Gaspar A.H., Ye N. et al. An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. Structure, 2007, 15: 893-903.
- Lasa I. Towards the identification of the common features of bacterial biofilm development. Int. Microbiol. 2006, 9: 21-28.
- Lasa I., Penades J.R. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 2006,157: 99-107.
- Leavis H., Top J., Shankar N. et al. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J. Bacteriol. 2004, 186: 672-682.
- Lindahl G., Stalhammar-Carlemalm M., Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin. Microbiol. Rev. 2005, 18: 102-127.
- Maisey H.C., Hensler M., Nizet V. et al. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J. Bacteriol. 2007, 189: 1464-1467.
- Mandlik A., Swierczynski A., Das A. et al. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 2007, 64: 111-124.
- Mandlik A., Swierczynski A., Das A. et al. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008, 16: 33-40.
- Manetti A.G., Zingaretti C., Falugi F. et al. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol. Microbiol. 2007, 64: 968-983.
- Mishra A., Das A., Cisar J.O. et al. Sortasecatalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol. 2007, 189: 3156-3165.
- Nallapareddy S.R., Singh K.V., Sillanpaa J. et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Invest. 2006, 116: 2799-2807.
- Nelson A.L., Ries J., Bagnoli F. et al. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 2007, 66: 329-340.
- O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, 54: 49-79.
- Russel L.M., Holmes R.K. Highly toxinogenic but avirulent Park-Williams 8 strain of Corynebacterium diphtheriae does not produce siderophore. Infect. Immun. 1985, 47: 575-578.
- Saye D.E. Recurring and antimicrobial-resistant infections: considering the potential role of biofilms in clinical practice. Ostomy Wound Manage. 2007, 53: 46-62.
- Shapiro J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 1998, 52: 81-104.
- Stoodley P., Sauer K., Davies D.G. et al. Biofilms as complex differentiated communities. Ibid. 2002, 56: 187-209.
- Swierczynski A., Ton-That H. Type III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit. J. Bacteriol. 2000, 188, 6318–6325.
- Telford J.L., Barocchi M.A., Margarit I. et al. Pili in gram-positive pathogens. Nat. Rev. Microbiol. 2006, 4: 509-519.
- Ton-That H., Marraffini L.A., Schneewind O. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol. Microbiol. 2004, 53: 251-261.
- Ton-That H., Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae. Ibid. 2003, 50: 1429-1438.
- Ubeda C., Tormo M.A., Cucarella C. et al. Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Ibid. 2003, 49: 193-210.
- Varga J.J., Nguyen V., O’Brien D.K. et al. Type IV pili-dependent gliding motility in the Grampositive pathogen Clostridium perfringens and other Clostridia. Ibid. 2006, 62:680-694.
- Zong Y., Xu Y., Liang X. et al. A «Collagen Hug» model for Staphylococcus aureus CNA binding to collagen. EMBO J. 2005, 24: 4224-4236.