MHC-MULTIMERS AND THEIR APPLICATION IN STUDIES OF ANTIVIRAL IMMUNE RESPONSE


Cite item

Full Text

Abstract

Application of main histocompatibility complex tetrames (MHC-tetramers) for antigen specific T-cells detection and analysis coupled with flow cytometry opened new opportunities for T-cell response analysis. MHC-multimers allow the de- tection of T-cells against viral, cancer and vaccine antigens with exceptional sensitivity and specificity. This approach has become the «gold standard» for quantative analysis of T-cell immune response. Certain aspects of analysis using MHC-tetramer are examined, and importance of this approach in T-cell response efficacy evaluation in anti-HIV vaccine trials as well as in HIV positive patients are discussed.

Full Text

MHC-МУЛЬТИМЕРЫ И ИХ ПРИМЕНЕНИЕ В ИЗУЧЕНИИ ПРОТИВОВИРУСНОГО ИММУННОГО ОТВЕТА
×

About the authors

L. I Karpenko

State Scientific Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region

L. V Mechetina

Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia

A. Yu Reguzova

State Scientific Center of Virology and Biotechnology «Vector», Koltsovo, Novosibirsk region

References

  1. Altman J.D., Moss P., Goulder P. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996, 274: 94-96.
  2. Altman J.D. Flow cytometry applications of MHC tetramers. Meth. Cell. Biol. 2004, 75: 433-452.
  3. Amara R.R., Villinger F., Altman J.D. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science. 2001, 292 (5514): 69-74.
  4. Appay V., Nixon D.F., Donahoe S.M. et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 2000, 192: 63—75.
  5. Bakker A.H., Hoppes R., Linnemann C. et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. PNAS. 2008, 105: 3825-3830.
  6. Barber D.L., Wherry E.J., Masopust D. et al. Restoring function of exhausted CD8 T cells during chronic viral infection. Nature. 2006, 439: 682-687.
  7. Borrow P., Lewicki H., Wei X. et al. Antiviral pressure exerted by HIV-1 — specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 1997, 3: 205-211.
  8. Bousso P. Generation of MHC-peptide tetramers: a new opportunity for dissecting T-cell immune responses. Microb. Infect. 2000, 2: 425-429
  9. Bridgeman A., Roshorm Y., Lockett L.J. et al. Ovine atadenovirus, a novel and highly immunogenic vector in prime-boost studies of a candidate HIV-1 vaccine. Vaccine. 2009, 28 (2): 474-483.
  10. Castelmur I., DiPaolo C., Bachmann M.F. et al. Comparison of the sensitivity of in vivo and in vitro assays for detection of antiviral cytotoxic T cell activity. Cell. Immunol. 1993, 151 (2): 460-466.
  11. Davis M.M., Bjorkman P.J. T-cell antigen receptor genes and T-cell recognition. Nature. 1988, 334: 395-401.
  12. Day C.L., Kaufmann D.E., Kiepiela P. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Ibid. 2006, 443 (7109): 350-354.
  13. Delves P. J., Roitt I.M. (ed.). Encyclopedia of Immunology. London, Academic Press, 1998.
  14. Earl P.L., Cotter C., Moss B. et al. Design and evaluation of multi-gene, multi-clade HIV-1 MVA vaccines. Vaccine. 2009, 27 (42): 5885-5895.
  15. Fytili P., Dalekos G.N., Schlaphoff V. et al. Cross-genotype-reactivity of the immunodominant HCV CD8 T-cell epitope NS3-1073. Ibid. 26 (31): 3818-3826.
  16. Goulder P., Altfeld M., Walker B. et al. Substantial differences in specificity of HIVspecific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 2001, 193: 181-193.
  17. Grotenbreg G.M., Roan N.R., Guillen E. et al. Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. PNAS. 2008, 105: 3831-3836.
  18. Guillaume P., Dojcinovic D., Luescher I. F. et al. Soluble MHC-peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research. Cancer Immunity. 2009, 9: 7-18.
  19. Ha S.J., Mueller S.N., Wherry E.J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 2008, 205: 543-555.
  20. Haglund K., Leiner I., Kerksiek K. et al. Robust recall and long-term memory T-cell responses induced by prime-boost regimens with heterologous live viral vectors expressing human immunodeficiency virus type 1 Gag and Env proteins. J. Virol. 2002, 76: 7506-7517.
  21. Harari A., Bart P.A., Stöhr W. et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med. 2008, 205 (1): 63-77.
  22. Koido S., Hara E., Homma S. et al. Dendritic/pancreatic carcinoma fusions for clinical use: Comparative functional analysis of healthyversus patient-derived fusions. Clin. Immunol. 2010, 135 (3): 384-400.
  23. Lécuroux C., Girault I., Urrutia A. et al. Identification of a particular HIV-specific CD8+ T-cell subset with a CD27+CD45RO-/RA+ phenotype and memory characteristics after initiation of HAART during acute primary HIV infection. Blood. 2009, 113 (14): 3209-3217.
  24. Lichterfeld M., Kavanagh D.G., Williams K.L. et al. A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells. J. Exp. Med. 2007, 204 (12): 2813-2824.
  25. Llano A., Frahm N., Brander C. How to optimally define optimal cytotoxic t lymphocyte epitopes in HIV infection? In: HIV Molecular immunology database 2009. Brander C., Korber B., Walker B.D. et al. (ed.). Los Alamos National Laboratory, 2009, p. 2-24
  26. McHeyzer-Williams M.G., Altman J.D., Davis M.M. Tracking antigen-specific helper T cell responses. Curr. Opin. Immunol. 1996, 8: 278-284.
  27. McHeyzer-Williams M.G., Davis M.M. Antigen-specific development of primary and memory T cells in vivo. Science. 1995, 268: 106-111.
  28. Meidenbauer N., Hoffmann T., Donnenberg A.D. Direct visualization of antigen-specific T cells using peptide-MHC-class I tetrameric complexes. Methods. 2003, 31: 160-171.
  29. Monti P., Scirpoli M., Maffi P. et al. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J. Clin. Invest. 2008, 118 (5): 1806-1814.
  30. Novitsky V., Rybak N., McLane M.F. et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev- and Nef- specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J. Virol. 2001, 75: 9210-9228.
  31. Ogg G.S., Kostense S., Klein M.R. et al. Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. Ibid. 1999, 9153-9160.
  32. Owen J.A., Allouche M., Doherty P.C. Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell. Immunol. 1982, 67: 49-59.
  33. Petrovas C., Price D.A., Mattapallil J. et al. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood. 2007, 110: 928-936.
  34. Propato A., Schiaffella E., Vicenzi E. et al. Spreading of HIV-specific CD8+ T-cell repertoire in long-term nonprogressors and its role in the control of viral load and disease activity. Hum.Immunol. 2001, 62: 561-576.
  35. Sáez-Cirión A., Sinet M., Shin S.Y. et al. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses. J. Immunol. 2009, 182 (12): 7828–7837.
  36. Salisch N.C., Kaufmann D.E., Awad A.S. et al. Inhibitory TCR coreceptor PD-1 is a sensitive indicator of low-level replication of SIV and HIV-1. J. Immunol. 2010, 184 (1): 476-487.
  37. Shephard E., Burgers W.A., Van Harmelen J.H. et al. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res. Hum. Retrovir. 2000, 24 (2): 207-217.
  38. Spiegel H.M., Ogg G.S., DeFalcon E. et al. Human immunodeficiency virus type 1- and cytomegalovirus-specific cytotoxic T lymphocytes can persist at high frequency for prolonged periods in the absence of circulating peripheral CD4+ T cells. J. Virol. 2000, 74: 1018-1022.
  39. Sun Y., Iglesias E., Samri A. et al. A systematic comparison of methods to measure HIV-specific CD8 T cells. J. Immunol. Meth. 2003, 272: 23-34.
  40. Toebes M., Coccoris M., Bins A. et al. Design and use of conditional MHC class I ligands. Nat. Med. 2006, 12: 246-251.
  41. Toebes M., Rodenko B., Ovaa H., Schumacher T.N. Generation of peptide MHC class I monomers and multimers through ligand exchange. Curr. Prot. Immunol. 2009, 18: 16-26.
  42. Townsend A.R., Rothbard J., Gotch F.M. et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986, 44: 959-968.
  43. Trautmann L., Janbazian L., Chomont N. et al. Upregulation of PD-1 expression on HIV-specific CD8 + T cells leads to reversible immune dysfunction. Nat. Med. 2006, 12: 1198-1202.
  44. Urbani S., Amadei B., Tola D. et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J. Virol. 2006, 80: 11398-11403.
  45. Westrop S.J. Grageda N, Imami N. Novel approach to recognition of predicted HIV-1 Gag B*3501-restricted CD8 T-cell epitopes by HLAB* 3501+ patients: Confirmation by quantitative ELISpot analyses and characterization using multimers. J. Immunol. Meth. 2009, 341: 76-85.
  46. Xu X.N., Screaton G.R. MHC/peptide tetramer-based studies of T cell function. J. Immunol. Meth. 2002, 268:21-28.
  47. Zajac A.J., Blattman J.N., Murali-Krishna K. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 1998, 188: 2205-2213.
  48. Zhang J.Y., Zhang Z., Wang X. et al. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogres- sors. Blood. 2007, 109: 4671-4678.
  49. Zimmerli S.C., Harari A., Cellerai C. et al. HIV-1-specific IFN-γ/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. PNAS. 2005, 102 (20): 7239-7244.
  50. Zinkernagel R.M., Doherty P.C. H-2 compatibility requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D. J. Exp. Med. 1975, 141: 1427-1436.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Karpenko L.I., Mechetina L.V., Reguzova A.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies