MHC-МУЛЬТИМЕРЫ И ИХ ПРИМЕНЕНИЕ В ИЗУЧЕНИИ ПРОТИВОВИРУСНОГО ИММУННОГО ОТВЕТА


Цитировать

Полный текст

Аннотация

Использование тетрамеров главного ком- плекса гистосовместимости (MHC-тетра- меров) в обнаружении и анализе специфич- ных для антигена T-клеток совместно с проточной цитометрией открыло новые воз- можности для анализа Т-клеточного ответа. МНС-мультимеры позволяют обнаруживать T-клетки, направленные против вирусных, опухолевых или вакцинных антигенов с ис- ключительной чувствительностью и специ- фичностью. Эта техника стала «золотым стандартом» для количественного определе- ния T-клеточного иммунного ответа. Рас- сматриваются некоторые аспекты анализа с помощью МНС-тетрамеров и обсуждается важная роль этой технологии в оценке эффек- тивности Т-клеточного ответа при испытани- ях вакцин против ВИЧ, а также у пациентов, инфицированных ВИЧ.

Полный текст

MHC-МУЛЬТИМЕРЫ И ИХ ПРИМЕНЕНИЕ В ИЗУЧЕНИИ ПРОТИВОВИРУСНОГО ИММУННОГО ОТВЕТА
×

Об авторах

Л. И Карпенко

ГНЦ вирусологии и биотехнологии «Вектор», пос. Кольцово, Новосибирская обл

Л. В Мечетина

Институт химической биологии и фундаментальной медицины, Новосибирск

А. Ю Регузова

ГНЦ вирусологии и биотехнологии «Вектор», пос. Кольцово, Новосибирская обл

Список литературы

  1. Altman J.D., Moss P., Goulder P. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996, 274: 94-96.
  2. Altman J.D. Flow cytometry applications of MHC tetramers. Meth. Cell. Biol. 2004, 75: 433-452.
  3. Amara R.R., Villinger F., Altman J.D. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science. 2001, 292 (5514): 69-74.
  4. Appay V., Nixon D.F., Donahoe S.M. et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 2000, 192: 63—75.
  5. Bakker A.H., Hoppes R., Linnemann C. et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. PNAS. 2008, 105: 3825-3830.
  6. Barber D.L., Wherry E.J., Masopust D. et al. Restoring function of exhausted CD8 T cells during chronic viral infection. Nature. 2006, 439: 682-687.
  7. Borrow P., Lewicki H., Wei X. et al. Antiviral pressure exerted by HIV-1 — specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 1997, 3: 205-211.
  8. Bousso P. Generation of MHC-peptide tetramers: a new opportunity for dissecting T-cell immune responses. Microb. Infect. 2000, 2: 425-429
  9. Bridgeman A., Roshorm Y., Lockett L.J. et al. Ovine atadenovirus, a novel and highly immunogenic vector in prime-boost studies of a candidate HIV-1 vaccine. Vaccine. 2009, 28 (2): 474-483.
  10. Castelmur I., DiPaolo C., Bachmann M.F. et al. Comparison of the sensitivity of in vivo and in vitro assays for detection of antiviral cytotoxic T cell activity. Cell. Immunol. 1993, 151 (2): 460-466.
  11. Davis M.M., Bjorkman P.J. T-cell antigen receptor genes and T-cell recognition. Nature. 1988, 334: 395-401.
  12. Day C.L., Kaufmann D.E., Kiepiela P. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Ibid. 2006, 443 (7109): 350-354.
  13. Delves P. J., Roitt I.M. (ed.). Encyclopedia of Immunology. London, Academic Press, 1998.
  14. Earl P.L., Cotter C., Moss B. et al. Design and evaluation of multi-gene, multi-clade HIV-1 MVA vaccines. Vaccine. 2009, 27 (42): 5885-5895.
  15. Fytili P., Dalekos G.N., Schlaphoff V. et al. Cross-genotype-reactivity of the immunodominant HCV CD8 T-cell epitope NS3-1073. Ibid. 26 (31): 3818-3826.
  16. Goulder P., Altfeld M., Walker B. et al. Substantial differences in specificity of HIVspecific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 2001, 193: 181-193.
  17. Grotenbreg G.M., Roan N.R., Guillen E. et al. Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. PNAS. 2008, 105: 3831-3836.
  18. Guillaume P., Dojcinovic D., Luescher I. F. et al. Soluble MHC-peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research. Cancer Immunity. 2009, 9: 7-18.
  19. Ha S.J., Mueller S.N., Wherry E.J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 2008, 205: 543-555.
  20. Haglund K., Leiner I., Kerksiek K. et al. Robust recall and long-term memory T-cell responses induced by prime-boost regimens with heterologous live viral vectors expressing human immunodeficiency virus type 1 Gag and Env proteins. J. Virol. 2002, 76: 7506-7517.
  21. Harari A., Bart P.A., Stöhr W. et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med. 2008, 205 (1): 63-77.
  22. Koido S., Hara E., Homma S. et al. Dendritic/pancreatic carcinoma fusions for clinical use: Comparative functional analysis of healthyversus patient-derived fusions. Clin. Immunol. 2010, 135 (3): 384-400.
  23. Lécuroux C., Girault I., Urrutia A. et al. Identification of a particular HIV-specific CD8+ T-cell subset with a CD27+CD45RO-/RA+ phenotype and memory characteristics after initiation of HAART during acute primary HIV infection. Blood. 2009, 113 (14): 3209-3217.
  24. Lichterfeld M., Kavanagh D.G., Williams K.L. et al. A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells. J. Exp. Med. 2007, 204 (12): 2813-2824.
  25. Llano A., Frahm N., Brander C. How to optimally define optimal cytotoxic t lymphocyte epitopes in HIV infection? In: HIV Molecular immunology database 2009. Brander C., Korber B., Walker B.D. et al. (ed.). Los Alamos National Laboratory, 2009, p. 2-24
  26. McHeyzer-Williams M.G., Altman J.D., Davis M.M. Tracking antigen-specific helper T cell responses. Curr. Opin. Immunol. 1996, 8: 278-284.
  27. McHeyzer-Williams M.G., Davis M.M. Antigen-specific development of primary and memory T cells in vivo. Science. 1995, 268: 106-111.
  28. Meidenbauer N., Hoffmann T., Donnenberg A.D. Direct visualization of antigen-specific T cells using peptide-MHC-class I tetrameric complexes. Methods. 2003, 31: 160-171.
  29. Monti P., Scirpoli M., Maffi P. et al. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J. Clin. Invest. 2008, 118 (5): 1806-1814.
  30. Novitsky V., Rybak N., McLane M.F. et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev- and Nef- specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J. Virol. 2001, 75: 9210-9228.
  31. Ogg G.S., Kostense S., Klein M.R. et al. Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. Ibid. 1999, 9153-9160.
  32. Owen J.A., Allouche M., Doherty P.C. Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell. Immunol. 1982, 67: 49-59.
  33. Petrovas C., Price D.A., Mattapallil J. et al. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood. 2007, 110: 928-936.
  34. Propato A., Schiaffella E., Vicenzi E. et al. Spreading of HIV-specific CD8+ T-cell repertoire in long-term nonprogressors and its role in the control of viral load and disease activity. Hum.Immunol. 2001, 62: 561-576.
  35. Sáez-Cirión A., Sinet M., Shin S.Y. et al. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses. J. Immunol. 2009, 182 (12): 7828–7837.
  36. Salisch N.C., Kaufmann D.E., Awad A.S. et al. Inhibitory TCR coreceptor PD-1 is a sensitive indicator of low-level replication of SIV and HIV-1. J. Immunol. 2010, 184 (1): 476-487.
  37. Shephard E., Burgers W.A., Van Harmelen J.H. et al. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res. Hum. Retrovir. 2000, 24 (2): 207-217.
  38. Spiegel H.M., Ogg G.S., DeFalcon E. et al. Human immunodeficiency virus type 1- and cytomegalovirus-specific cytotoxic T lymphocytes can persist at high frequency for prolonged periods in the absence of circulating peripheral CD4+ T cells. J. Virol. 2000, 74: 1018-1022.
  39. Sun Y., Iglesias E., Samri A. et al. A systematic comparison of methods to measure HIV-specific CD8 T cells. J. Immunol. Meth. 2003, 272: 23-34.
  40. Toebes M., Coccoris M., Bins A. et al. Design and use of conditional MHC class I ligands. Nat. Med. 2006, 12: 246-251.
  41. Toebes M., Rodenko B., Ovaa H., Schumacher T.N. Generation of peptide MHC class I monomers and multimers through ligand exchange. Curr. Prot. Immunol. 2009, 18: 16-26.
  42. Townsend A.R., Rothbard J., Gotch F.M. et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986, 44: 959-968.
  43. Trautmann L., Janbazian L., Chomont N. et al. Upregulation of PD-1 expression on HIV-specific CD8 + T cells leads to reversible immune dysfunction. Nat. Med. 2006, 12: 1198-1202.
  44. Urbani S., Amadei B., Tola D. et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J. Virol. 2006, 80: 11398-11403.
  45. Westrop S.J. Grageda N, Imami N. Novel approach to recognition of predicted HIV-1 Gag B*3501-restricted CD8 T-cell epitopes by HLAB* 3501+ patients: Confirmation by quantitative ELISpot analyses and characterization using multimers. J. Immunol. Meth. 2009, 341: 76-85.
  46. Xu X.N., Screaton G.R. MHC/peptide tetramer-based studies of T cell function. J. Immunol. Meth. 2002, 268:21-28.
  47. Zajac A.J., Blattman J.N., Murali-Krishna K. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 1998, 188: 2205-2213.
  48. Zhang J.Y., Zhang Z., Wang X. et al. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogres- sors. Blood. 2007, 109: 4671-4678.
  49. Zimmerli S.C., Harari A., Cellerai C. et al. HIV-1-specific IFN-γ/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. PNAS. 2005, 102 (20): 7239-7244.
  50. Zinkernagel R.M., Doherty P.C. H-2 compatibility requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D. J. Exp. Med. 1975, 141: 1427-1436.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Карпенко Л.И., Мечетина Л.В., Регузова А.Ю., 2011

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах