TARGET-DIRECTED SEARCH OF ANTI-VIRULENCE DRUGS


Cite item

Full Text

Abstract

Modern medicine now encounters with problem of the absence of effective antibacterial drugs, which are able to render therapeutic effect on chronic form of infectious process. Thus, the actual objective is to develop essentially new generation of drugs, on the basis of which should lie identification of new bacterial targets playing key role in process of chronization of infection as well as selection of new physiologically active substances, which are able to render highly specific inhibitory effect on selected target. Solving of this objective is possible during realization of new approaches for search and design of new drugs and, first of all, during usage of bioinformatics methods, which enable to identify new biotargets, select most effective chemical compounds-inhibitors and optimize their pharmacological and pharmacokinetic properties. The most promising bacterial target is secretion systems of pathogenic microorganisms participating in realization of their virulent characteristics and playing major role in transition of infectious process in chronic phase. We performed synthesis of and screening for 80 compounds, which allowed to select a range of inhibitors rendering specific target-directed effect on type 3 secretion system of Chlamydia. Obtained data allow to further assess of biological and therapeutic activity of these compounds on developed models of infectious process in vivo .

Full Text

МИШЕНЬ-НАПРАВЛЕННЫЙ ПОИСК АНТИВИРУ ЛЕНТНЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ
×

About the authors

N. A Zigangirova

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

E. D Fedina

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

V. V Zorina

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

P. A Bortsov

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

E. A Tokarskaya

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

A. S Karyagina

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

A. V Alekseevsky

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

M. M Krayushkin

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

E. S Zayakin

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

V. N Yarovenko

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

A. L Gintsburg

Gamaleya Research Institute of Epidemiology and Microbiology; Zelinsky Institute of Organic Chemistry; Belozersky Institute of Physicochemical Biology at Lomonosov Moscow State University, Moscow, Russia

References

  1. Зефирова О.Н., Зефиров Н. С. Медицинская химия. Методологические основы создания лекарственных препаратов. Вестн. Моск. ун-та. Сер. 2. Химия. 2000, 41 (2): 103-108.
  2. Зефиров Н.С., Зефирова О.Н. Рациональный дизайн лекарственных средств. Химия и жизнь. 2004, 11: 6-9.
  3. Прядко А. Курск на перемены. Фармацевт. вест. 2008, 22: 1-3.
  4. Семенов Б.Ф. Концепция создания быстрой иммунологической защиты от патогенов. Журн. микробиол.2007, 4: 93-100.
  5. Bailey L., Gylfe A., Sundin C. et al. Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett. 2007, 581 (4): 587-595.
  6. Baron C., Coombes B. Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect. Disord. Drug. Targets. 2007, 7 (1): 19-27.
  7. Benson R.E., Gottlin E.B., Christensen D.J. et al. Intracellular expression of peptide fusions for demon- stration of protein essentiality in bacteria. Antimicrob. Agents. Chemother. 2003, 47 (9): 2875–2881.
  8. Cegelski L., Marshall G.L., Eldridge G.R. et al. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 2008, 6 (1): 17–27.
  9. Clatworthy A.E., Pierson E., Hung D.T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 2007, 3 (9): 541-548.
  10. Clifton D.R., Fields K.A., Grieshaber S.S.et al. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. PNAS. 2004, 101 (27): 10166–10171.
  11. Dahlgren M.K., Kauppi A.M., Olsson I.M. et al. Design, synthesis, and multivariate quantitative structure-activity relationship of salicylanilides-potent inhibitors of type III secretion in Yersinia. J. Med. Chem. 2007, 50 (24): 6177—6188.
  12. Fan B.T., Lu H., Hu H. et al. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J.Exp. Med. 1998, 187 (4):487–496.
  13. Fisher S.F., Schwarz C., Vier J. et al. Characterization of antiapoptotic activities of Chlamydia pneumoniae in human cells. Infect.Immun. 2001, 69 (11):7121–7129.
  14. Fischer S.F., Vier J., Kirschnek S. et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med. 2004, 200 (7): 905–916.
  15. Galan JE, Collmer A. Type III Secretion machines: bacterial devices for protein delivery into host cells. Science. 1999, 284(5418): 1322-1328.
  16. Höppner C., Liu Z., Domke N. et al. VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J. Bacteriol. 2004, 186 (5): 1415-1422.
  17. Hueck C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 1998, 62 (2): 379-433.
  18. King F. D., Chem R. S. Medicinal chemistry: principles and practice. Cambridge, 1994.
  19. Muschiol S., Bailey L., Gylfe A. et al. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. PNAS. 2006, 103 (39): 14566–14571.
  20. Nabipour I., Vahdat K., Jafari S.M. et al. The association of metabolic syndrome and Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, and herpes simplex virus type 1: the persian gulf healthy heart study. Cardiovasc. Diabetol. 2006, 5: 1-6.
  21. Niels H., Bjarne H., Jens J. Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie van Leeuwenhoek. 2006, 89 (2—3): 239-249.
  22. Neumann F. Chlamydia pneumoniae-Atherosclerosis Link. Circulation. 2002, 106 (19): 2414-2426.
  23. Peters J.M., Wilson D.P., Myers G. et al. Type III secretion à la Chlamydia. Trends Microbiol. 2007,15 (6): 241-251.
  24. Rad R., Prinz C., Schmid R. Helicobacter pylori and prognosis of gastric carcinoma. Lancet Oncol. 2006, 7 (5): 364—365.
  25. Ramensky V., Sobol A., Zaitseva N. et al. A novel approach to local similarity of protein binding sites substantially improves computational drug design results. Proteins. 2007, 69: 349–357.
  26. Shaw E.I., Dooley С.A., Fischer E.R. et al. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol. Microbiol. 2000, 37 (4): 913–925.
  27. Verbeke P., Welter-Stahl L., Ying S. et al. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2006, 2 (5): 0408-0417.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Zigangirova N.A., Fedina E.D., Zorina V.V., Bortsov P.A., Tokarskaya E.A., Karyagina A.S., Alekseevsky A.V., Krayushkin M.M., Zayakin E.S., Yarovenko V.N., Gintsburg A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies