METABOLIC PROFILE OF BIFIDOFLORA UNDER DIFFERENT MICROECO-LOGICAL CONDITIONS OF THE COLON BIOTOPE IN HUMAN

Cover Page


Cite item

Full Text

Abstract

Aim. To study the spectrum and level of short-chained fatty acids (SCFA) in supernatant of bifidobacteria under different microecological conditions of the colon biotope in human. Materials and methods. Metabolites of 88 bifidobacteria strains isolated from patients when examined for dysbiosis of the colon were investigated. Definition of concentration of SCFA was performed on acidified supernatant samples by a separation method on chromatograph GC-2010 Plus, Shimadzu (Japan). Results. Monobasic acids were found in metabolites of 50 -100% study cultures of bifidobacteria where the spectrum and level of carboxylic acids in supernatants varied depending on microecological condition of the origin of the discharge. In severe damages of microsym-biocenosis in metabolites of Bifidobacterium spp., summarized concentrations of SCFA, structural index, levels of aceitic and propionic acids were decreased. Strain-specific differences in a metabolic profile of bifidoflora in a composition of individual consortiums were determined. Data obtained indicate the variation of functional (metabolic) activity of dominant strains in different microecological conditions of the human colon. Conclusion. Uniquieness of metabolome of every other strain due to their strain specifity determines their functional activity, but a metabolic profile of bifidoflora can serve as the most important criterion for the selection of effective probiotic drugs for treatment and prevention of dysbioisis in the colon.

About the authors

O. V. Bukharin

Institute of Cellular and Intracellular Symbiosis

Author for correspondence.
Email: noemail@neicon.ru
Россия

E. V. Ivanova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Россия

N. B. Perunova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Россия

I. N. Chainikova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Россия

S. V. Andryuschenko

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Россия

References

  1. Алешкин В.А., Ардатская М.Д., Бабин В.Н. и др. Способ разделения смеси жирных кислот, фракций С2 - С7 методом газожидкостной хроматографии. Патент РФ № 2145511. Бюл.№ 11,2000.
  2. Бухарин О.В., Перунова Н.Б., Иванова Е.В. Бифидофлора при ассоциативном симбиозе человека. Екатеринбург, УрО РАН, 2014.
  3. Затевалов А. М. Интегральная оценка состояния микробиоценозов биотопов желудочно-кишечного тракта и методы коррекции их нарушений. Автореф. дис. д-ра биол. наук. М., 2016.
  4. Методические указания по контролю химических факторов. Определение массовых концентраций летучих жирных кислот (уксусная, пропионовая, изомасляная, масляная, валериановая, изокапроновая, капроновая) в биосредах (кровь) газохроматографическим методом. МУ № 4.1.2773-10. М., Роспотребнадзор, 2010.
  5. Belenguer A., Duncan S.H., Calder A.G. et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 2006, 72 (5): 3593-3599.
  6. Besten G., van Eunen K., Groen A. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54 (9): 2325-2340.
  7. Chen Y., Gozzi K., Yan F. et al. Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. MBio. 2015, 6 (3): e00392-15.
  8. Fetissov S.O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 2016, 12. doi:.1038/nrendo.
  9. FurusawaY., ObataY., FukudaS. etal. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013, 504 (7480): 446-450.
  10. Kau A.L., Ahem P.P., Griffin N. W. Human nutrition, the gut microbiome, and immune system. Nature. 2011, 474 (7351): 327-336.
  11. Murzyn A., Krasowska A., Stefanowicz P. et al. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One. 2010, 5 (8): el2050.
  12. Russell D.A., Ross R.P., Fitzgerald G.F. et al. Metabolic activities and probiotic potential of bifidobacteria. Int. J. Food Microbiol. 2011, 149 (1): 88-105.
  13. Sun Y., O’Riordan M.X.D. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 2013, 85: 93-118.
  14. Verbeke K.A., Boobis A.R., Chiodini A. et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 2015, 28 (1): 42-66.
  15. Jousimies-Somer H., Summanen R, Citron D. et al. Wadsworth-KTL anaerobic bacteriology manual. Washington., 2002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Bukharin O.V., Ivanova E.V., Perunova N.B., Chainikova I.N., Andryuschenko S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies