Effect of antibodies to agglutinogens 1 and 2, filamentous hemagglutinin and pertussis toxin on formation of Bordetella pertussis biofilms on abiotic substrate
- Authors: Zaytsev E.M.1, Britsina M.V.1, Ozeretskovskaya M.N.1, Mertsalova N.U.1, Bazhanova I.G.1
-
Affiliations:
- I.I. Mechnikov Reseach Institute of Vaccines and Sera
- Issue: Vol 98, No 3 (2021)
- Pages: 283-289
- Section: ORIGINAL RESEARCHES
- Submitted: 28.05.2021
- Accepted: 28.05.2021
- Published: 28.05.2021
- URL: https://microbiol.crie.ru/jour/article/view/1037
- DOI: https://doi.org/10.36233/0372-9311-110
- ID: 1037
Cite item
Full Text
Abstract
Aim. Study of the effect of antibodies to agglutinogens 1 and 2, filamentous hemagglutinin (FHA) and pertussis toxin (PT) on the formation of biofilms by Bordetella pertussis strains on the abiotic substrate.
Materials and methods. Vaccine-derived and freshly isolated strains of B. pertussis were used. Cultures of strains grown on a dense nutrient medium were used as an inoculum for obtaining biofilms. The intensity of biofilm formation in round-bottomed polystyrene 96-well plates in the presence of antisera to agglutinogens 1 and 2, antiserum to FHA, and monoclonal antibodies (MСА) to the S1, S2, and S3 subunits of PT was evaluated by staining with 0.1% gentian-violet solution.
Results. Most of the studied strains were sensitive to antibodies, which was manifested in complete suppression of biofilm formation. All strains were sensitive to antiserum to agglutinogen 1, antiserum to FHA, and MCA to the S2 subunit of KT. Three out of 4 studied strains with this agglutinogen in their composition were sensitive to antiserum to agglutinogen 2: No. 475 (serotype 1.2.3), No. 317 (serotype 1.2.3) and No. 178 (serotype 1.2.0). Relative resistance to antiserum was detected only in serotype 1.2.0 strain No. 305, but with minimal dilution, the intensity of biofilm formation was 1.8 times lower than in the control group. Strains No. 703 (serotype 1.0.3) and No. 287 (serotype 1.0.3) that did not have agglutinogen 2 were resistant to antiserum. Four and 5 out of the 6 strains used were sensitive to the S1 and S3 subunits of PT, respectively. Strain No. 305 was resistant to MCA to the S1 and S3 subunits, and strain No. 287 to MCA to the S1 subunit. At the same time, the intensity of biofilm formation was 2 and 1.8 times lower than in the control at the minimum MCA dilution.
Conclusion. These data indicate that the growth of biofilms of B. pertussis strains is suppressed by antibodies both to the surface structures of the microbial cell (agglutinogens 1 and 2, FHA) and to the S1, S2 and S3 subunits of PT.
Full Text
Введение
Эпидемический процесс коклюшной инфекции продолжается во всем мире, в том числе в странах с высоким уровнем вакцинации. Заболеваемость коклюшем в последние годы составляет 10–40 случаев на 100 тыс. жителей в год и наиболее высока у детей младшего возраста. Рост заболеваемости регистрируется также среди подростков и взрослых, являющихся источником передачи инфекции неиммунизированным младенцам, которые подвергаются риску тяжелых форм заболевания и смерти [1][2][3].
Рост заболеваемости коклюшем связывают с рядом факторов, среди которых выделяют недостаточную эффективность существующих бесклеточных коклюшных вакцин, а также мутации в генах возбудителя, кодирующих основные факторы вирулентности Bordetella pertussis, что привело к появлению циркулирующих штаммов, отличающихся повышенной вирулентностью [4][5]. Одной из вероятных причин продолжающегося эпидемического процесса коклюшной инфекции также могут быть биоплёнки B. pertussis.
Согласно современным представлениям, биоплёнки представляют собой сообщества бактериальных клеток, прикреплённых к поверхности и друг к другу и заключённых в полимерный матрикс. Компоненты матрикса защищают бактерии в биоплёнке от повреждающих факторов внешней среды [6]. Этапы формирования биоплёнок включают начальное прикрепление к поверхности отдельных клеток, их рост с образованием монослоя с последующим образованием микроколоний и полимерного матрикса. Первичное прикрепление планктонных бактерий к абиотическим поверхностям является обратимым процессом, в реализации которого принимают участие физико-химические взаимодействия, в частности, электростатические и гидрофобные. Переход к необратимой связи происходит с участием адгезинов, расположенных на поверхности микробных клеток и специфичных для каждого вида бактерий [7].
Микробы рода Bordetellа, как и другие бактерии, обладают способностью к формированию биоплёнок на абиотических и биотических поверхностях. B. pertussis продуцирует ряд вирулентных факторов, определяющих патогенез коклюшной инфекции. Условно их можно разделить на адгезины (фимбрии, пертактин, фактор колонизации трахеи, филаментозный гемагглютинин (ФГА)) и токсины (коклюшный токсин (КТ), дермонекротический токсин, трахеальный цитотоксин, аденилатциклаза, липополисахарид).
Имеются данные о значении адгезинов B. pertussis и КТ для прикрепления к клеткам респираторного тракта. Однако значение этих факторов для формирования биоплёнок на биотических и абиотических поверхностях, а также чувствительность биоплёнок B. pertussis к иммунным факторам пока изучена недостаточно, по данной проблеме имеются лишь единичные публикации [8].
Цель работы — изучение влияния антител к агглютиногенам (АГ) -1 и -2, ФГА и КТ на формирование биоплёнок B. pertussis на абиотическом субстрате.
Материалы и методы
В опытах использовали «вакцинные» штаммы B. pertussis, выделенные от больных коклюшем в 1950–1960-е гг., использующиеся в России для изготовления корпускулярных коклюшных вакцин: штамм № 475 (серовар 1.2.3), штамм № 305 (серовар 1.2.0), штамм № 703 (серовар 1.0.3), а также выделенные в России от больных коклюшем в 2001–2010 гг.: штамм № 178 (серовар 1.2.0), штамм № 287 (серовар 1.0.3) и штамм № 317 (серовар 1.2.3). В опытах использовали сыворотки диагностические коклюшные к АГ-1 и -2 (Филиал «Медгамал» НИИЭМ им. Н.Ф. Гамалеи), мышиную сыворотку к ФГА (кат. номер JNIH-11), мышиные моноклональные антитела (МКА) к субъединицам S1 (кат. номер 99/506), S2 (кат. номер 99/538) и S3 (кат. номер 99/542) КТ (National Institute for Biological Standards and Control, Великобритания). Контроль морфологических, серологических и культуральных свойств штаммов проводили в соответствии с методическими указаниями1.
В качестве инокулята для получения биоплёнок использовали ночные культуры штаммов, выращенных на плотной питательной среде («Бордетелагар» — питательная среда для культивирования и выделения коклюшного микроба сухая, ФБУН ГНЦ ПМБ, Оболенск). Cуспензию бактерий культивировали в 96-луночных пластиковых планшетах («Nunc») в жидкой синтетической питательной среде в соответствии с ранее описанным методом [9]. Культуры штаммов в жидкой синтетической питательной среде в концентрации 10 МОЕ в объёме 100 мкл вносили в лунки планшетов. После этого в лунки добавляли по 100 мкл антител. Сыворотки к АГ-1 использовали в разведениях 1 : 5000, 1 : 10 000, 1 : 20 000, 1 : 4000, к АГ-2 — 1 : 2500, 1 : 5000, 1 : 10 000, 1 : 20 000. Сыворотку к ФГА и МКА к субъединицам КТ использовали в разведениях 1 : 20, 1 : 200, 1 : 400 и 1 : 800. Отрицательным контролем служили сыворотки неиммунных мышей и кроликов в разведениях 1 : 20 и 1 : 2500 соответственно.
Планшеты накрывали крышкой и помещали в термостат при 37ºС в горизонтальном положении на ровную поверхность на 24 ч. Интенсивность образования биопленок (ИОБ) в планшетах оценивали по окрашиванию 0,1% раствором генцианового фиолетового по показателям оптической плотности (ОП) окрашенного растворителя по отношению к негативному контролю (ОПК = 0,047) как плотные (ОП ≥ 0,188), умеренные (0,094 ≤ ОП < 0,188), слабые (0,078 ≤ ОП < 0,094), отсутствие биопленок (ОП < 0,078).
Результаты оценивали по значениям титра сывороток, которые определяли как наибольшие их разведения, подавляющие рост биоплёночных культур по сравнению с контролем (слабые биоплёнки или их отсутствие). Формирование плотных и умеренных биоплёнок в присутствии антител рассматривали как устойчивость к антителам. Для достоверного обсчёта результатов использовали 5 лунок на один опытный образец и рассчитывали среднюю величину ОП опытного образца и удвоенную ошибку. Сравнения проводили по критерию t Стьюдента [10].
Результаты
Результаты исследования чувствительности вакцинных и свежевыделенных штаммов B. pertussis к антителам к антигенам возбудителя коклюша приведены в таблице.
Чувствительность вакцинных и свежевыделенных штаммов B. pertussis к антителам к антигенам коклюшного микроба
Sensitivity of vaccine and freshly isolated B. pertussis strains to antibodies to antigens of pertussis microbe
|
| Штаммы (серовар) / Strains (serotype) | |||||
Параметр Parameter | вакцинные / vaccine | свежевыделенные / freshly isolated | |||||
|
| № 475 (1.2.3) | № 305 (1.2.0) | № 703 (1.0.3) | № 317 (1.2.3) | № 178 (1.2.0) | № 287 (1.0.3) |
Контроль Control | ОП optical density | 0,138 ± 0,020 | 0,242 ± 0,031 | 0,232 ± 0,042 | 0,195 ± 0,012 | 0,193 ± 0,021 | 0,192 ± 0,013 |
| ИОБ intensity of biofilm formation | Умеренная Medium | Плотная Dense | Плотная Dense | Плотная Dense | Плотная Dense | Плотная Dense |
Сыворотка к АГ-1 Antiserum to agglutinogen 1 | ОП optical density ИОБ intensity of biofilm formation | 0,072 ± 0,006 Нет No | 0,089 ± 0,010 Слабая Weak | 0,066 ± 0,005 Нет No | 0,089 ± 0,003 Слабая Weak | 0,087 ± 0,009 Слабая Weak | 0,093 ± 0,004 Слабая Weak |
| титр антител serum dilution | 1 : 20 000‘ | 1 : 10 000‘ | 1 : 10 000‘ | 1 : 5000‘ | 1 : 10 000‘ | 1 : 5000‘ |
Сыворотка к АГ-2 Antiserum to agglutinogen 2 | ОП optical density ИОБ intensity of biofilm formation | 0,076 ± 0,005 Нет No | 134 ± 0,013 Умеренная Medium | 0,212 ± 0,032 Плотная Dense | 0,092 ± 0,004 Слабая Weak | 0,098 ± 0,011 Слабая Weak | 0,174 ± 0,013 Умеренная Medium |
| титр антител serum dilution | 1 : 10 000‘ | 1 : 2500‘‘ | ‘‘ | 1 : 2500‘ | 1 : 2500‘ | ‘‘ |
Сыворотка к ФГА Antiserum to FHA | ОП optical density | 0,056 ± 0,003 | 0,053 ± 0,002 | 0,054 ± 0,009 | 0,0052 ± 0,002 | 0,054 ± 0,007 | 0,062 ± 0,003 |
| ИОБ intensity of biofilm formation | Нет No | Нет No | Нет No | Нет No | Нет No | Нет No |
| титр антител serum dilution | 1 : 200‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ |
МКА к Si-субъединице КТ MCA to the Si subunit of PT | ОП optical density ИОБ intensity of biofilm formation | 0,082 ± 0,006 Слабая Weak | 0,121 ± 0,006 Умеренная Medium | 0,060 ± 0,002 Нет No | 0,075 ± 0,001 Нет No | 0,077 ± 0,019 Нет No | 0,105 ± 0,007 Умеренная Medium |
| титр антител MCA dilution | 1 :200‘ | 1 : 20‘‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘‘ |
МКА к S2-субъединице КТ MCA to the S2 subunit of PT | ОП optical density ИОБ intensity of biofilm formation | 0,073 ± 0,002 Нет No | 0,080 ± 0,004 Слабая Weak | 0,055 ± 0,001 Нет No | 0,056 ± 0,002 Нет No | 0,059 ± 0,003 Нет No | 0,071 ± 0,002 Нет No |
| титр антител MCA dilution | 1 :200‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ |
МКА к SS-субъединице КТ MCA to the S3 subunit of PT | ОП optical density ИОБ intensity of biofilm formation | 0,079 ± 0,005 Нет No | 0,119 ± 0,013 Умеренная Medium | 0,058 ± 0,002 Нет No | 0,056 ± 0,002 Нет No | 0,055 ± 0,002 Нет No | 0,065 ± 0,003 Нет No |
| титр антител MCA dilution | 1 :200‘ | 1 : 20‘‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ | 1 : 20‘ |
Примечание. *Подавление роста биоплёнок (различия между опытными образцами и контролем статистически достоверны (р < 0,05); **отсутствие подавления роста биоплёнок.
Note. *Suppression of biofilm growth (differences between experimental samples and control are statistically significant (p < 0.05); **no suppression of biofilm growth.
Контрольные культуры (не содержавшие антител) исследованных штаммов отличались по ИОБ. Штамм № 475 формировал умеренные биоплёнки, а штаммы № 305, 703, 317, 178 и 287 — плотные.
Все исследованные штаммы проявляли чувствительность к антисыворотке к АГ-1. Титры антисыворотки к АГ-1, подавлявшие рост биоплёнок со штаммом № 475, составляли 1 : 20 000, со штаммами № 305, 703 и 178 — 1 : 10 000, а со штаммами № 287 и 317 — 1 : 5000.
К сыворотке к АГ-2 были чувствительны 3 штамма: № 475 (серовар 1.2.3), 317 (серовар 1.2.3) и 178 (серовар 1.2.0). Вакцинный штамм № 475 отличался высокой чувствительностью к сыворотке, титр которой составлял 1:10 000. Титры сыворотки со штаммами № 317 и 178 составляли 1 : 2500. Штамм № 305 (серовар 1.2.0) проявлял устойчивость к сыворотке и формировал умеренные или плотные биоплёнки в зависимости от её разведения, однако при разведении 1 : 2500 ИОБ была в 1,8 раза ниже, чем в контроле. Штаммы № 703 (серовар 1.0.3) и 287 (серовар 1.0.3) были устойчивыми к сыворотке и формировали умеренные или плотные биоплёнки.
Все штаммы были чувствительны к антисыворотке к ФГА, титр которой со штаммом № 475 составлял 1 : 200, а с остальными штаммами — 1 : 20.
МКА к S1-субъединице КТ подавляли рост биоплёнок штамма № 475 в разведении 1 : 200, а штаммов № 703, 317 и 178 — в разведении 1 : 20. Штаммы № 305 и 287 были устойчивы к МКА к S1-субъединице и формировали умеренные или плотные биоплёнки, однако при разведении МКА 1 : 20 ИОБ была в 2 раза ниже, чем в контроле культуры.
Все штаммы были чувствительны к МКА к S2-субъединице КТ. Титр МКА со штаммом № 475 составлял 1 : 200, а с остальными штаммами — 1 : 20.
К МКА к S3-субъединице КТ были чувствительны у 5 из 6 исследованных штаммов. Титр МКА со штаммом № 475 составлял 1 : 200, а со штаммами № 703, 317, 178 и 287 — 1 : 20. Штамм № 305 был устойчив к МКА и формировал умеренные или плотные биоплёнки. При разведении МКА 1 : 20 ИОБ была в 2 раза ниже, чем в контроле.
Обсуждение
Механизмы образования биоплёнок B. pertussis и влияние на этот процесс иммунных факторов мало изучены и могут быть связаны с эффекторными механизмами клеточного и гуморального иммунитета [8]. Нами исследована чувствительность биоплёнок основных сероваров (1.0.3, 1.2.0 и 1.2.3) вакцинных и свежевыделенных штаммов B. pertussis к сывороткам к АГ-1 и -2, ФГА и МКА к S1-, S2- и S3-субъединицам КТ. Результаты опытов показали, что большинство исследованных штаммов были чувствительными к антителам, что проявлялось в полном подавлении образования биоплёнок. Все штаммы были чувствительными к сыворотке к АГ-1 и ФГА, МКА к S2-субъединице КТ. К сыворотке к АГ-2 были чувствительными 3 из 4 исследованных штаммов, имеющих этот АГ в своем составе: № 475 (серовар 1.2.3), № 317 (серовар 1.2.3) и № 178 (серовар 1.2.0). Относительная устойчивость к сыворотке была выявлена только у штамма № 305 серовара 1.2.0, однако при минимальном её разведении ИОБ была в 1,8 раза ниже, чем в контроле культуры. Штаммы № 703 (серовар 1.0.3) и 287 (серовар 1.0.3), не имеющие АГ-2, были устойчивы к сыворотке. К МКА к S1- и S3-субъединицам КТ были чувствительны, соответственно, 4 и 5 из 6 использованных штаммов. Штамм № 305 был устойчив к МКА к S1- и S3-субъединицам, а штамм № 287 — к МКА к S1-субъединице. При этом при минимальном разведении МКА ИОБ была в 2 и 1,8 раза соответственно ниже, чем в контроле культуры.
По отношению ко всем штаммам выявлена зависимость ИОБ от разведения антител. Увеличение разведения антител сопровождалось усилением роста биоплёнок. Относительная устойчивость штамма № 305 к сыворотке к АГ-2 и к МКА к S1- и S3-субъединицам КТ, а штамма № 287 к S1-субъединице КТ может быть обусловлена различным соотношением между уровнем экспрессии этих факторов и уровнем антител в составе использованных препаратов.
В целом мы не обнаружили существенных различий между исследованными вакцинными и свежевыделенными штаммами по чувствительности к противококлюшным антителам. Исключение составил вакцинный штамм № 475, отличавшийся более высокой, по сравнению с другими штаммами, чувствительностью к антителам. Высокую чувствительность штамма № 475 к антителам можно объяснить относительно низкой, в отличие от остальных штаммов, ИОБ.
Результаты опытов позволяют сделать определённые выводы о значении АГ-1 и -2, ФГА и S1-, S2- и S3-субъединиц КТ для биоплёнкообразования B. pertussis на абиотическом субстрате. Подавление образования биоплёнок сыворотками к АГ-2 и ФГА согласуется с современными представлениями о их значении в патогенезе коклюша. Основным адгезином B. pertussis является ФГА, участвующий в процессах адгезии и колонизации респираторного тракта. В адгезии B. pertussis на клетках респираторного тракта принимают участие также фимбриальные белки, состоящие из двух основных субъединиц — Fim2 и Fim3, соответствующих АГ-2 и -3. Подавление образования биоплёнок сыворотками к ФГА и АГ-2 подтверждает их значение как адгезинов и согласуется с данными других авторов [11]. Влияние сывороток к ФГА на рост биоплёнок может быть связано не только с подавлением адгезии планктонных клеток на субстрате, но также с их прикреплением к формирующейся биоплёнке [12].
АГ-1 является поверхностной структурой микробной клетки, однако, в отличие от АГ-2 и -3, не ассоциирован с фимбриями. Значение этого антигена для патогенеза коклюша не вполне ясно, однако известно его значение как протективного антигена. В частности, было показано, что защитная активность цельноклеточных коклюшных вакцин коррелирует с содержанием в клетке АГ-1, -2, -3 [13]. Полученные нами данные указывают на значение АГ-1 для формирования биоплёнок и могут предполагать его роль в качестве адгезина.
Интерес представляют результаты влияния МКА к субъединицам КТ на образование биоплёнок. КТ является одним из основных факторов патогенности B. pertussis и обусловливает значительную часть симптомов заболевания у больных коклюшем. КТ является экзотоксином, секретируемым микробной клеткой, представляет собой белок с молекулярной массой 117 кДа. Молекула токсина состоит из двух функциональных частей (А и В) и 5 структурных единиц (S1, S2, S3, S4 и S5). Фрагмент А токсина соответствует структурной S1-субъединице, которая обладает ферментативной активностью и катализирует АДФ-зависимое рибозилирование белка клеточной мембраны трансдуцина. Последнее приводит к нарушению контроля функционирования аденилатциклазы, накоплению цАМФ и нарушению функции клеток. Фрагмент В молекулы КТ состоит из S2-, S3-, S4- и S5-субъединиц и отвечает за связывание с рецепторами клеток-мишеней [14][15]. Подавление роста биоплёнок МКА к S2- и S3-субъединицам КТ может указывать на их роль в качестве факторов адгезии. Однако МКА к S1-субъединице также подавляли рост биоплёнок. В связи с этим нельзя исключить роль КТ в формировании биопленок как фактора «поверхностного кондиционирования». По данным ряда авторов, «поверхностное кондиционирование» является одним из факторов образования биоплёнок и заключается в адсорбции на субстрате белков, липидов, полисахаридов и других молекул внеклеточного матрикса, что приводит к модификации его поверхности и влияет на процессы адгезии микроорганизмов [7]. Можно предположить, что связывание МКА к S1-субъединице с молекулой КТ может приводить к конформационным изменениям его молекулы, меняющих его способность к связыванию с субстратом.
В целом приведённые данные указывают на значение в формировании биоплёнок как поверхностных структур микробных клеток (ФГА, АГ-1 и -2), так и секретируемого ими КТ. Полученные результаты свидетельствуют о сложности процесса образования и иммунного подавления биоплёнок B. pertussis и целесообразности дальнейших исследований этой области, в частности изучение значения других патогенных факторов коклюшного микроба.
1. МУК 4.2.2317-08. Отбор, проверка и хранение производственных штаммов коклюшных, паракоклюшных и бронхисептикозных бактерий. М.; 2009.
About the authors
E. M. Zaytsev
I.I. Mechnikov Reseach Institute of Vaccines and Sera
Author for correspondence.
Email: pertussis@yandex.ru
ORCID iD: 0000-0002-4813-9074
Eugene M. Zaуtsev — D. Sci. (Med.), Head, Laboratory of immunomodulators
Moscow
РоссияM. V. Britsina
I.I. Mechnikov Reseach Institute of Vaccines and Sera
Email: fake@neicon.ru
ORCID iD: 0000-0002-3044-0790
Marina V. Вritsina — Cand. Sci. (Biol.), leading researcher, Laboratory of immunomodulators
Moscow
РоссияM. N. Ozeretskovskaya
I.I. Mechnikov Reseach Institute of Vaccines and Sera
Email: fake@neicon.ru
ORCID iD: 0000-0001-9809-4217
Maria N. Ozeretskovskaya — Cand. Sci. (Biol.), leading researcher, Laboratory of immunomodulators
Moscow
РоссияN. U. Mertsalova
I.I. Mechnikov Reseach Institute of Vaccines and Sera
Email: fake@neicon.ru
ORCID iD: 0000-0002-9072-2538
Natalia U. Mertsalova — Cand. Sci. (Biol.), leading researcher, Laboratory of immunomodulators
Moscow
РоссияI. G. Bazhanova
I.I. Mechnikov Reseach Institute of Vaccines and Sera
Email: fake@neicon.ru
ORCID iD: 0000-0003-1404-1498
Irina G. Bazhanova — Cand. Sci. (Biol.), senior researcher, Laboratory of immunomodulators
Moscow
РоссияReferences
- Barkoff A.M., He Q. Molecular epidemiology of Bordetella pertussis. Adv. Exp. Med. Biol. 2019; 1183: 19–33. https://doi.org/10.1007/5584_2019_402
- Nieves D.J., Heininger U. Bordetella pertussis. Microbiol. Spectr. 2016; 4(3). https://doi.org/10.1128/microbiolspec.EI10-0008-2015
- Борисова О.Ю., Гадуа Н.Т., Пименова А.С., Петрова М.С., Попова О.П., Алешкин В.А. и др. Структура популяции штаммов возбудителя коклюша на территории России. Эпи- демиология и вакцинопрофилактика. 2016; 15(4): 22–8.
- Субботина К.А., Фельдблюм И.В., Кочергина Е.А., Лехти- на Н.А. Эпидемиологическое обоснование к изменению стратегии и тактики специфической профилактики коклю- ша в современных условиях. Эпидемиология и вакцинопро- филактика. 2019; 18(2): 27-33. https://doi.org/10.31631/2073-3046-2019-18-2-27-33
- Di Mattia G., Nicolai A., Frassanito A., Petrarca L., Nenna R., Midulla F. Pertussis: new preventive strategies for an old disease. Paediatr. Respir. Rev. 2019; 29: 68–73. https://doi.org/10.1016/j.prrv.2018.03.011
- Del Pozo J.L. Biofilm-related disease. Expert Rev. Anti Infect Ther. 2018; 16(1): 51–65. https://doi.org/10.1080/14787210.2018.1417036
- Dunne W.M.Jr. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 2002; 15(2): 155–66. https://doi.org/10.1128/CMR.15.2.155-166.2002
- Cattelan N., Dubey P., Arnal L., Yantorno O.M., Deora R. Bordetella biofilms: a lifestyle leading to persistent infections. Pathog. Dis. 2016; 74(1): ftv108. https://doi.org/10.1093/femspd/ftv108
- Зайцев Е.М., Брицина М.В., Озерецковская М.Н., Мер- цалова Н.У., Бажанова И.Г. Культивирование биопленок Bordetella pertussis на абиотическом субстрате. Журнал ми- кробиологии эпидемиологии и иммунобиологии. 2019; 96(1): 49–53. https://doi.org/10.36233/0372-9311-2019-1-49-53
- Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. Ленинград; 1962.
- Scheller E.V., Cotter P.A. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog. Dis. 2015; 73(8): ftv079. https://doi.org/10.1093/femspd/ftv079
- Serra D.O., Conover M.S., Arnal L., Sloan G.P., Rodriguez M.E., Yantorno O.M., et al. FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One. 2011; 6(12): e28811. https://doi.org/10.1371/journal.pone.0028811
- Чупринина Р.П., Алексеева И.А. Возможность повышения иммуногенной активности и стабильности цельноклеточ- ного коклюшного компонента комбинированных вакцин. Эпидемиология и вакцинопрофилактика. 2014; (2): 89–95.
- Scanlon K., Skerry C., Carbonetti N. Role of major toxin virulence factors in pertussis infection and disease pathogenesis. Adv. Exp. Med. Biol. 2019; 1183: 35–51. https://doi.org/10.1007/5584_2019_403
- Carbonetti N.H. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog. Dis. 2015; 73(8): ftv073. https://doi.org/10.1093/femspd/ftv073