FACTORS OF ADHESION OF BIFIDOBACTERIA
- Authors: Zakharova Y.V.1
-
Affiliations:
- Kemerovo State Medical Academy
- Issue: Vol 93, No 5 (2016)
- Pages: 80-87
- Section: REVIEWS
- Submitted: 10.04.2019
- Published: 28.10.2016
- URL: https://microbiol.crie.ru/jour/article/view/90
- DOI: https://doi.org/10.36233/0372-9311-2016-5-80-87
- ID: 90
Cite item
Full Text
Abstract
Data on fimbrial and afimbrial adhesion factors of bifidobacteria are presented. Pili-like structures, their composition and conditions of formation in various species of bifidobacteria are described. Several sugar-lytic enzymes serve as afimbrial adhesins in bifidobacteria. Transaldolase and enolase are detected in bifidobacteria on cells’ surface. Transaldolase ensures binding of bifidobacteria with mucin and their auto-aggregation. Surface enolase has an affinity to plasminogen, thus bifidobacteria obtain a surface-bound protein with proteolytic activity. Molecular structures giving bifidobacteria hydrophobic properties are described - surface lipoprotein Bop A and lipoteichoic acids.
About the authors
Yu. V. Zakharova
Kemerovo State Medical Academy
Author for correspondence.
Email: noemail@neicon.ru
Россия
References
- Бухарин О.В. Инфекция - модельная система ассоциативного симбиоза. Журн. микробиол. 2009, 1:83-86.
- Бухарин, О.В., Кремлева Е.А., Черкасов С.В. Особенности эпителиально-бактериальных взаимодействий при бактериальном вагинозе. Журн. микробиол. 2012, 3: 3-8.
- Бухарин О.В., Сгибнев А.В. Влияние активных форм кислорода на адгезивные характеристики и продукцию биопленок бактериями. Журн. микробиол. 2012, 3: 70-УЗ.
- Лахтин В.М., Алешкин В.А., Лахтин М.В., Афанасьев С.С., Поспелова В.В., тендеров Б.А. Лектины, адгезины и лектиноподобные вещества лактобацилл и бифидобактерий. Вестник РАМН. 2006, 1: 28-34.
- Маянский А.Н., Чеботарь И.В. Стафилококковые биопленки: структура, регуляция, отторжение. Журн. микробиол. 2011, 1: 101-108.
- Пронина Е.А., Швиденко И.Г., Шуб Г.М., Шаповал О.Г. Влияние электромагнитного излучения на частотах молекулярного спектра поглощения и излучения кислорода и оксида азота на адгезию и образование биопленок Pseudomonas aeruginosa. Журн. микробиол. 2011, 6: 61-64.
- Рубцова Е.В., Криворучко А. В., Яруллина Д.Р., Богачев М.И., Ким А.С., Куюкина М.С., Ившина И. Б. Влияние физико-химических свойств актинобактерий рода Rhodococcus на их адгезию к полистиролу и н-гексадекану. Фундаментальные исследования. 2013, 4: 900-904.
- Харсеева Г.Г., Москаленко Е.П., Алутина Э.Л., Бревдо А.М. Влияние полиоксидония на адгезивные свойства Corynebacterium diphtheriae. Журн. микробиол. 2009, 2: 11-15.
- Alp G., Aslim В., Suludere Z. et al. The role of hemagglutination and effect of exopolysaccharide production on bifidobacteria adhesion to Caco-2 cells in vitro. Microbiol. Immunol. 2010, 54(11): 658-665.
- AndriantsoanirinaV., Teolis AC.,Xin LX. et al. Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates: comparison of cell surface properties. Anaerobe. 2014, 28: 212-215.
- Bergmann S., Wild D., Diekmann O. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol. Microbiology. 2003,49:411-423.
- Boel G., Pichereau V., Mijakovic I. et al. Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J. Mol. Biol. 2004, 337: 485-496.
- Camp H.J.M., Oosterhof A., Veerkamp J.H. Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect. Immunity. 1985, (1): 332-334.
- Candela M., Biagi E., Centanni M. et al. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology. 2009, 155: 3294-3303.
- Canzi E., Guglielmetti S., Mora D. et al. Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek. 2005, 88: 207-219.
- Duranti S., Milanti S., Lugli GA. et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015, 17 (7): 2515-2531.
- Iguchi A., Umekawa N., Maegawa T. et al. Polymorphism and distribution of putative cell-surface adhesin-encording ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie van Leeuwenhoek. 2011, 99: 457-471.
- Esgleas M., Li Y., Hancock M. A. et al. Isolation and characterization of alphaenolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology. 2008, 154: 2668-2679.
- Foroni E., Serafini F., Amidani D. et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb. Cell Factories. 2011, 10(1): 16-29.
- Furuhata K., Kato Y., Goto K. et al. Diversity of heterotrophic bacteria isolated from boifilm samples and cell surface hydrophobicity. J. Gen. Appl. Microbiology. 2009, 55: 69-74.
- Gleinser M., Grimm V., Zhurina D. et al. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein Bop A. Microb. Cell Factories. 2012, 11 (80): 1-14.
- Gonzalez-Rodriguez I., Sanchez B., Ruiz L. et al. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl. Environ. Microbiology. 2012,78 (11): 3992-3998.
- Gonzalez-Rodriguez I., Ruiz L., Gueimonde M. et al. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol. Lett. 2013, 340 (1): 1-Ю.
- Guglielmetti S., Tamagnini I., Mora D. et al. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells. Appl. Environ. Microbiology. 2008, 15 (74): 4695-4702.
- Kainulainen V., Reunanen J., Hiippala K. et al. BopA does not have a major role in the adhesion of Bifidobacterium bifidum to intestinal epithelial cells, extracellular matrix proteins, and mucus. Appl. Environ. Microbiology. 2013, 79 (22): 6989-6997.
- Percy M.G., Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol. 2014, 68: 81-100.
- RauCl., Rathod V., Karuppayil S.M. Cell surface hydrophobicity and adhesion: a study on fifty clinical isolates of Candida albicans. Jap. J. Med. Mycology. 2010, 51: 131-136.
- Ruas-Madiedo P., Gueimonde M., Fernandez-Garcia M. et al. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiology. 2008, 74: 1936-1940.
- Satoh E. Adhesion of Lactobacillus reuteri to the human epithelial cells brought on by an adhesion factor and receptor-like molecules. Jap. J. Lactic Acid Bacteria. 2008, 19 (1): 30-36.
- Sun Z., Kong J., Hu Sh. et al. Characterization ofa S-layer protein from Lactobacillus crispa-tus КЗ 13 and the domains responsible for binding to cell wall and adherence to collagen. Appl. Microbiol. Biotechnology. 2013, 97 (5): 1941-1952.
- Turroni F., Foroni E., Montanini B. et al. Global genome transcription profiling of Bifidobacterium bifidum PRL 2010 under in vitro conditions and identification of reference genes for quantitative real-time PCR. Appl. Environ. Microbiology. 2011, 77 (24): 8578-8587.
- Turroni F., Serafini E, Mangifesta M. et al. Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions. FEMS Microbiol Lett. 2014, 357 (1): 23-33.
- Wang L-Q., Meng X-Ch, Zhang B-R. Influence of cell surface properties on adhesion ability of bifidobacteria. Word J. Microbiol. Biotechnology. 2010, 26: 1999-2007.
- Wei X., Yan X., Chen X. et al. Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J. Proteomics. 2014, 108: 89-98.
- Yamamoto K. Various glycosidases of Bifidobacteria and their roles in adhesion to intestinal tract. Jap. J. Lactic Acid Bacteria. 2008, 19(1): 2-8.
- Zhang L., Seiffert D., Fowler B.J. et al. Plasminogen has a broad extrahepatic distribution. Thromb Haemost. 2002, 87: 493-501.