RECOMBINANT ANTIBODIES IN ANTI-VIRAL THERAPY: ACHIEVEMENTS AND PERSPECTIVES
- Authors: Oksanich A.S.1, Nikonova A.A.1, Zverev V.V.1
-
Affiliations:
- Mechnikov Research Institute of Vaccines and Sera
- Issue: Vol 95, No 6 (2018)
- Pages: 114-123
- Section: Articles
- Submitted: 10.04.2019
- Published: 28.12.2018
- URL: https://microbiol.crie.ru/jour/article/view/337
- DOI: https://doi.org/10.36233/0372-9311-2018-6-114-123
- ID: 337
Cite item
Full Text
Abstract
More than 60 recombinant monoclonal antibodies (mAbs) have been developed for the treatment of various diseases in the last 20 years. About 30 antibody preparations are approved for use in therapy, including large group of drugs against cancer. In addition, mAbs are used in transplantation, for the treatment of cardiovascular, autoimmune and, in rare cases, infectious diseases. Despite the fact that tens millions of people die every year from viral diseases, only one drug based on recombinant antibodies for the prevention of RSV in children is currently allowed. This review focuses on approaches to generate therapeutic mAbs to fight viral infection, examples of mAb therapies for viral infections, and the challenges of developing such therapies.
Keywords
About the authors
A. S. Oksanich
Mechnikov Research Institute of Vaccines and Sera
Author for correspondence.
Email: noemail@neicon.ru
Россия
A. A. Nikonova
Mechnikov Research Institute of Vaccines and Sera
Email: noemail@neicon.ru
Россия
V. V. Zverev
Mechnikov Research Institute of Vaccines and Sera
Email: noemail@neicon.ru
Россия
References
- Беневоленский С.В., Зацепин С.С., Клячко Е.В. и др. Гуманизированные антигенсвязываю-щие фрагменты (Fab) против вируса бешенства, изолированный фрагмент ДНК, кодирующий Fab против вируса бешенства, клетка дрожжей, трансформированная фрагментом ДНК, и способ получения Fab против вируса бешенства с использованием дрожжей. Патент RU 2440412. Опубликован 20.01.2012.
- Панина А.А., Дементьева И.Г., Алиев Т.К. и др. Рекомбинантные антитела к гликопротеину вируса Эбола. Acta Naturae. 2017, 9 (4):87-95.
- Шингарова Л.Н., Тикунова Н.В., Юн Т.Э. и др. Рекомбинантная плазмидная днк pCL1, кодирующая полипептид со свойствами легкой цепи антитела человека против вируса Эбола, рекомбинантная плазмидная днк рСН1, кодирующая полипептид со свойствами тяжелой цепи указанного антитела, и их применение. Патент RU 2285043. Опубликован: 10.10.2006.
- Bakker A.B., Marissen W.E., Kramer R.A. et al. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J. Virol. 2005, 79(14): 9062-9068.
- Bar K.J., Sneller M.C., Harrison L.J. et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. N Engl J Med. 2016; 375(21): 2037-2050.
- Baranovich T., Jones J.C., Russier M. et al. The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome. Antimicrob Agents Chemother. 2016, 60(4): 2118-2131.
- Beigel J.H., Nordstrom J.L., Pillemer S.R. et al. Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus. Antimicrob Agents Chemother, 2010, 54(6): 2431-2436.
- Beltramello M., Williams K.L., Simmons C.P. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 2010; 8(3): 271-283.
- Both L., Banyard A.C., van Dolleweerd C. et al. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine. 2013, 31(12): 1553-1559.
- Broadbent L., Groves H., Shields M.D. et al. Respiratory syncytial virus, an ongoing medical dilemma: an expert commentary on respiratory syncytial virus prophylactic and therapeutic pharmaceuticals currently in clinical trials. Influenza Other Respir. Viruses. 2015, 9(4): 169-178.
- Carbonell-Estrany X., Simxes E.A., Dagan R. et al. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics. 2010, 125(1): e35-51.
- Cheung W.C., Beausoleil S.A., Zhang X. et al. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat Biotechnol. 2012,30(5): 447-452.
- Chung R.T., Gordon F.D., Curry M.P., et al. Human Monoclonal Antibody MBL-HCV1 Delays HCV Viral Rebound Following Liver Transplantation: A Randomized Controlled Study. Am. J. Transplant. 2013, 13(4): 1047-1054.
- De Benedictis P., Minola A., Rota Nodari E. et al. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol. Med. 2016, 8(4): 407-421.
- Deng R., Lee A.P., Maia M. et al. Pharmacokinetics of MHAA4549A, an Anti-Influenza A Monoclonal Antibody, in Healthy Subjects Challenged with Influenza A Virus in a Phase IIa Randomized Trial. Clin. Pharmacokinet. 2018, 57(3): 367-377.
- Dole K., Segal F.P., Feire A. et al. A First-in-Human Study To Assess the Safety and Pharmacokinetics of Monoclonal Antibodies against Human Cytomegalovirus in Healthy Volunteers. Antimicrob. Agents. Chemother. 2016, 60(5): 2881-2887.
- Domachowske J.B., Khan A.A., Esser M.T. et al. Safety, Tolerability and Pharmacokinetics of MEDI8897, an Extended Half-life Single-dose Respiratory Syncytial Virus Prefusion F-targeting Monoclonal Antibody Administered as a Single Dose to Healthy Preterm Infants. Pediatr. Infect. Dis. J. 2018, 37(9): 886-892.
- Ekiert D.C., Bhabha G., Elsliger M.A. et al. Antibody recognition of a highly conserved influenza virus epitope. Science. 2009, 324(5924): 246-251.
- Fibriansah G., Lok S.M. The development of therapeutic antibodies against dengue virus. Antiviral. Res. 2016, 128: 7-19.
- Ishida J.H., Burgess T., Derby M.A. et al. Phase 1 Randomized, Double-Blind, Placebo-Controlled Study of RG7667, an Anticytomegalovirus Combination Monoclonal Antibody Therapy, in Healthy Adults. Antimicrob. Agents. Chemother. 2015, 59(8): 4919-4929.
- Ishida J.H., Patel A., Mehta A.K. et al. Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of RG7667, a Combination Monoclonal Antibody, for Prevention of Cytomegalovirus Infection in High-Risk Kidney Transplant Recipients. Antimicrob. Agents. Chemother. 2017, 61(2): e01794-16.
- Jacobson J.M., Lalezari J.P., Thompson M.A. et al. Phase 2a study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults. Antimicrob. Agents. Chemother. 2010, 54(10): 4137-4142.
- Klein F., Mouquet H., Dosenovic P. et al. Antibodies in HIV-1 vaccine development and therapy. Science. 2013, 341(6151): 1199-1204.
- McDaniel J.R., DeKosky B.J., Tanno H. et al. Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nat Protoc. 2016;11(3): 429-442.
- Mejias A., Ramilo O. New options in the treatment of respiratory syncytial virus disease. J Infect. 2015; 71 Suppl 1: S80-87.
- Mire C.E., Geisbert J.B., Borisevich V. et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci. Transl. Med. 2017, 9(384).
- Ohlin M., Soderberg-Naucler C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol. Immunol. 2015, 67(2 Pt A): 153-170.
- Pace C.S., Song R., Ochsenbauer C. et al. Bispecific antibodies directed to CD4 domain 2 and HIV envelope exhibit exceptional breadth and picomolar potency against HIV-1. Proc. Natl. Acad. Sci. USA. 2013, 110(33): 13540-13545.
- Patel H.D., Nikitin P., Gesner T. et al. In Vitro Characterization of Human Cytomegalovirus-Targeting Therapeutic Monoclonal Antibodies LJP538 and LJP539. Antimicrob. Agents. Chemother. 2016, 60(8): 4961-4971.
- Qiu X., Wong G., Audet J. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014, 514(7520): 47-53.
- Ramadhany R., Hirai I., Sasaki T. et al. Antibody with an engineered Fc region as a therapeutic agent against dengue virus infection. AntiviralRes. 2015, 124: 61-68.
- Ramos E.L., Mitcham J.L., Koller T.D. et al. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza. J. Infect. Dis. 2015, 211(7): 1038-1044.
- Robbie G.J., Criste R., Dall'acqua W.F. et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob. Agents. Chemother. 2013, 57(12): 6147-6153.
- Schoofs T., Klein F., Braunschweig M. et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science. 2016, 352(6288): 997-1001.
- Shingai M., Nishimura Y., Klein F. et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature. 2013; 503(7475): 277-280.
- Tharakaraman K., Subramanian V., Cain D. et al. Broadly neutralizing influenza hemagglutinin stemspecific antibody CR8020 targets residues that are prone to escape due to host selection pressure. Cell. Host. Microbe. 2014, 15(5): 644-651.
- Therapeutic monoclonal antibodies: from the bench to the clinic. [Edited by] Zhiqiang An. 2009 John Wiley & Sons, Inc.: 189-307.
- Wang Q., Yang H., Liu X. et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci. Transl. Med. 2016, 8(369): 369ra179.
- Wang Y., Rowley K.J., Booth B.J. et al. G glycoprotein amino acid residues required for human monoclonal antibody RAB1 neutralization are conserved in rabies virus street isolates. Antiviral. Res. 2011, 91(2): 187-194.
- Welburn S.C., Coleman P.G., Zinsstag J. Rabies Control: Could Innovative Financing Break the Deadlock? Front. Vet. Sci. 2017, 4: 32.