BIOMEDICAL POTENTIAL OF ALGO-BACTERIAL SYMBIOSES

Abstract

The analysis of the latest published works on the interactions between microalgae and bacteria is presented. Microalgae as a result of multimillion evolution can interact with each other and with another microorganisms. Interactions between algae and bacteria demonstrate a variety of communication from mutualism to parasitism. They can significantly affect the maintenance of vital activity, determines the direction vector, ensure the integrity of ecosystems. In modern society the attention of researches to algae-bacterial symbiosis increases as a biomass producer and as biologically active compounds. The development of green biotechnology is aimed at creating new directions for the use of algae-bacterial interactions. The analyzes materials testify to the high fundamental and applied potential of symbiosis microalgae with bacteria for biology and medicine.

About the authors

N. V. Nemtseva

Institute of Cellular and Intracellular Symbiosis

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

O. A. Gogoleva

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

M. E. Ignatenko

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

References

  1. Борисова Е.В., Ногина Т.М. Бактерии рода Rhodococcus, сопутствующие зеленым водорослям в природе и при лабораторном культивировании. Гидробиол. журнал. 1997, 3: 44-50.
  2. Бухарин О.В., Немцева Н.В. Микробиология биоценозов природных водоемов. Екатеринбург, УрО РАН, 2008.
  3. Бухарин О.В., Перунова Н.Б. Микросимбиоценоз. Екатеринбург, УрО РАН, 2014.
  4. Глаголева О.А., Зенова Г.Ш., Добровольская Т.Г. Взаимодействие водорослей и бактерий-спутников в ассоциативных культурах. Альгология. 1992, 2(2): 57-63.
  5. Горобец О.Б., Блинкова Л.П., Батуро А.П. Влияние микроводорослей на жизнеспособность микроорганизмов в естественной и искусственной среде обитания. Журн. микробиол. 2001, (1): 104-108.
  6. Немцева Н.В. Гидробиоценозы - модельная система ассоциативного симбиоза. Журн. микробиол. 2015, (4): 49-54.
  7. Немцева Н.В. Изучение образования биопленок в питьевой воде в процессе водоподготовки. Бюллетень Оренбургского научного центра УрО РАН (электронный журнал). 2017, 2: 1-10.
  8. Ножевникова А. Н., Бочкова Е. А., Плакунов В. К. Мультивидовые биопленки в экологии, медицине и биотехнологии. Микробиология. 2015, 84(6): 623-644.
  9. Al-Mailem D.M., Kansour M.K., Radwan S.S. Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes. Can. J. Microbiol. 2014, 60(7): 477-486.
  10. Cooper M.B., Smith A.G. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant. Biol. 2015, 26: 147-153
  11. Costerton J.W, Lewandowski Z., Caldwell E. et al. Microbial Biofilms. Annu. Rev. Microbial. 1995, 49: 711-745.
  12. Croft M.T., Lawrence A.D., Raux-Deery E. et al. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005, 438 (7064): 90-93.
  13. Cuellar-Bermudez S.P., Aguilar-Hernandez I., Cardenas-Chavez D.L. et al. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2015, 8 (2): 190-209.
  14. Decho A. W. The EPS Matrix as an Adaptive Bastion for Biofilms: Introduction to Special Issue. Int. J. Mol. Sci. 2013, 14 (12): 23297-23300.
  15. Flemming H.-C., Wingender J. The biofilm matrix. Nature Reviews Microbiology. 2010, 8(9): 623-633.
  16. Fuentes J. L., Garbayo I., Cuaresma M. et al. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds. Mar. Drugs. 2016, 14(100): 1-16
  17. Grandclement C.,Tannieres M.,Morera S. et al. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 2016, 40(1): 86-116.
  18. Hester E. R., Barott K. L., Nulton J. et al. Stable and sporadic symbiotic communities of coral and algal holobionts.The ISME Journal. 2016, 10: 1157-1169.
  19. Imase M., Watanabe K., Aoyagi H. et al. Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiol. Ecol. 2008, 63(3): 273-282.
  20. Karuppiah V., Alagappan K., Li Zh. Coral Holobiont Omics: Microbes and Dinoflagellates. In: Marine OMICS: Principles and Applications (Ed. Se-Kwon Kim). Boca Raton: CRC Press, Taylor &Francis Group. 2016, 8:133-163.
  21. Kouzuma A., Watanabe K. Exploring the potential of algae/bacteria interactions. Current Opinion in Biotechnology. 2015, 33: 125-129.
  22. Krohn-Molt I., Wemheuer B., Alawi M. et al. Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl. Environ. Microbiol. 2013, 79(20): 6196-6206.
  23. Lakaniemia A-M., Hulatt C. J., Wakeman K. D. et al. Eukaryotic and prokaryotic microbial communities during microalgal biomass production. Bioresource Technology. 2012, 124: 387-393.
  24. Microbiota of the Human Body, Advances in Experimental Medicine and Biology. (Ed. A. Schwiertz). Switzerland: Springer International Publishing, 2016.
  25. Natrah F.M., Bossier P, Sorgeloos P. et al. Significance of microalgal-bacterial interactions for aquaculture. Rev. Aquaculture. 2013, 6: 48-61.
  26. Papone T., Kookkhunthod S., Leesing R. Microbial oil production by monoculture and mixed cultures of microalgae and oleaginous yeasts using sugarcane juice as substrate. World Acad. Sci. Eng. Technol. 2012, 64: 1127-1131.
  27. Ramanan R., Kim B.H., Cho D.H. et al. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016. 34 (1): 14-29.
  28. Rosenberg E., Zilber-Rosenberg I. Symbiosis and Development: The Hologenome Concept. Birth Defects Research (Part C). 2011,93: 56-66.
  29. Santos C. A., Reis A. Microalgal symbiosis in biotechnology. Appl. Microbiol. Biotechnol. 2014, 98 (13): 5839-5846.
  30. Sule P., Belas R.A. Novel Inducer of Roseobacter Motility Is Also a Disruptor of Algal Symbiosis. J. Bacteriol. 2013, 195 (4): 637-646.
  31. Takemura A.F., Chien D.M., Polz M.F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front Microbiol. 2014, 5 (38): 1-26.
  32. Tate J. J., Gutierrez-Wing M. T., Rusch K. A. et al. The Effects of Plant Growth Substances and Mixed Cultures on Growth and Metabolite Production of Green Algae Chlorella sp. J. Plant Growth Regulation. 2013, 32 (2): 417-428.
  33. Yhn N., Fan C., Chen Y. et al. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 2016, 17 (6): 962-986.
  34. Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 2008, 32 (5): 723-735.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Nemtseva N.V., Gogoleva O.A., Ignatenko M.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies