MICROBIAL COMPOSITION OF VARIOUS SURFACES OF SKIN DURING DEVELOPMENT OF ATOPIC DERMATITIS BASED ON DATA FROM MALDI-TOF MASS-SPECTROMETRY IDENTIFICATION METHOD

Cover Page


Cite item

Full Text

Abstract

Aim. Study transformation of skin microflora during development of atopic dermatitis. Materials and methods. 45 patients with various forms of atopic dermatitis (AtD) were examined. Control group consisted of 26 healthy individuals. The strains were cultivated on elective nutrient media. Identification of the isolated strains was carried out by MALDI-TOF mass-spectrometry method. Results. A low frequency of occurrence of taxon Staphylococcus epidermidis on face skin and high frequency of occurrence of Staphylococcus aureus on upper and lower limb skin was established for AtD patients compared with healthy individuals. The frequency of occurrence of proteolytically active isolates of S. aureus in AtD patients was 3 times higher than in healthy carriers of this taxon. Taxons of microorganisms not inherent to healthy individuals such as Bacillus mycoides, Pseudomonas putida, Pseudomonas radiobacter were isolated on lower limb and neck skin of AtD patients. A high frequency of occurrence of Cryptococcus satoi, Candida albicans, Malassezia globosa fungi was noted. Conclusion. A decrease of barrier functions of skin during AtD facilitates contamination of patients’ skin with rare bacterial taxons and fungi. One of the possible mechanisms of suppression of immune competent cell functions could be proteolytic enzymes of S. aureus.

About the authors

Yu. A. Tyurin

Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

R. S. Fassakhov

Kazan Research Institute of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

T. V. Grigorieva

Kazan Research Institute of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

I. G. Mustafin

Kazan State Medical University

Email: noemail@neicon.ru
Russian Federation

References

  1. Власов В.В. Микробный «орган» человека. Наука из первых рук. 2014, 1 (55): 33.
  2. Иванова Н. А., Данилова Е.Г. Количественное исследование микрофлоры здоровой кожи. Вестник дерматологии и венерологии. 1984, 2: 59-61.
  3. Куликов С.Н., Долбин Д.А., Тюрин Ю.А., Хайруллин Р.М., Фассахов Р.С. Высокочувствительный способ определения иммуноглобулин-протеиназной активности с использованием полимерных матриц. Патент РФ № 2519071. Бюл. № 16, 2014.
  4. Маянский Н.А., Калакуцкая А.Н., Мотузова О.В. и др. MALDI-TOF масс-спектрометрия в рутинной работе микробиологической лаборатории. Вопросы диагностики в педиатрии. 2011, 3 (5) :20-25.
  5. Тюрин Ю.А., Мустафин И.Г., Фассахов Р.С. Способ определения протеолитической модификации клеточных рецепторов на модели выделенных лимфоцитов периферической крови. Патент РФ № 2510026. Бюл. № 8, 2014.
  6. Тюрин Ю.А., Мустафин И.Г., Фассахов Р.С. Действие супернатантов штаммов Staphylococcus aureus на поверхностные рецепторы лимфоцитов человека. Бюл. эксп. биологии и медицины. 2012, 154 (12): 733-736.
  7. Baker B. S. The role of microorganisms in atopic dermatitis. Clin. Exp. Immunol. 2006, 144: 1-9.
  8. Chiller K, Selkin B. A., Murakawa G. J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc. 2001, 6 (3):170-174.
  9. Cogen A. L., Yhmasaki K., Sanchez K.M. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 2010, 130 (1): 192-200.
  10. Frank D. N., Feazel L. M., Bessesen M. T. et al. The human nasal microbiota and Staphylococcus aureus carriage. PLoS One. 2010, 17; 5 (5): e10598.
  11. Iwase T., Uehara Y, Shinji H. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010, 20; 465 (7296): 346-349.
  12. Marples R. R., Downing D. T., Kligman A. M. Control of free fatty acids in human surface lipids by Corynebacterium acnes. J. Invest. Dermatol. 1971, 56 (2): 127-131.
  13. Murray P. R. What is new in clinical microbiology-microbial identification by MALDI-TOF mass spectrometry: apaper from the 2011 William Beaumont Hospital Symposium on molecular pathology. J. Mol. Diagn. 2012, 14 (5): 419-423.
  14. Wertheim H. F., Melles D. C., Vos M. C. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5 (12): 751-762.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Tyurin Y.A., Fassakhov R.S., Grigorieva T.V., Mustafin I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies