THE MECHANISMS OF BACTERICIDAL ACTION IMPACT IN COMMON ANTIBACTERIAL EFFECTS OF METAL CATIONS IN CULTURE OF STREPTOCOCCUS PYOGENES

Cover Page


Cite item

Full Text

Abstract

Aim. The work was performed with the purpose to study an inhibitory action of millimolar concentrations of divalent metal ions, which differ by primary mechanisms of their toxicity, on the culture of S.pyogenes. Materials and methods. Suspensions of S.pyogenes bacteria which contained 108 CFU/ml were sown by the lawns into the standard Petri dishes coated with the supplemented Nutrient Agar. 30 min later the salt solutions of divalent metals were added by the 5 pl drops on the surfaces of the lawns with use of 36-channel stamp replicator. The salt solutions contained the metals tested at the concentrations ranged between 5x10-3 M to 5x10-1 M. Then the dishes with bacterial cultures were incubated for 24 hrs at 37°C followed by measuring diameter of the area of culture growth inhibition. The probes of material obtained from the centers of the stunting areas were passed into the centrifuge tubes with the supplemented Nutrient Broth, incubated for up to five days at 37°C and tested for the Broth clarity. Results. In presence of the metal concentrations ranged between 50 to 500 mM inhibitory action towards S.pyogenes bacteria was registered as relatively low due to the effects of copper or ferrous ions, as intermediate due to the presence of cobalt, nickel or manganese, and as high due to the effects of zinc ions. At the same time ferrous or copper ions demonstrated high bactericidal activity, zinc ions showed relatively low one, whereas manganese, nickel or cobalt were characterized by the lack of bactericidal action registered. Conclusion. Inhibitory action of heavy metal divalent ions on the lawns of S.pyogenes cultures probably includes bacteriostatic and bactericidal components which impact is determined by primary mechanisms of the ions toxicity.

About the authors

S. B. Cheknev

Gamaleya National Research Centre of Epidemiology and Microbiology

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

E. I. Vostrova

Gamaleya National Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

S. V. Kisil

Gamaleya National Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

M. A. Sarycheva

Gamaleya National Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

A. V. Vostrov

Gamaleya National Research Centre of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

References

  1. Бузолева Л.С., Кривошеева А.М. Влияние тяжелых металлов на размножение патогенных бактерий. Успехи соврем. естествознания. 2013, 7: 30-33.
  2. Савченко О.И., Кравчук Т.Н., Тапальский Д.В., Филиппова В.А. Антибактериальное действие катионов тяжелых металлов. Пробл. здоровья и экологии. 2014, 2 (40): 104109.
  3. Чекнев С.Б., Вострова Е.И., Апресова М.А., Писковская Л.С., Востров А.В. Торможение роста бактерий в культурах Staphylococcus aureus и Pseudomonas aeruginosa в присутствии катионов меди и цинка. Журн. микробиол. 2015, 2: 9-17.
  4. Чекнев С.Б., Вострова Е.И., Сарычева М.А., Кисиль С.В., Анисимов В.В., Востров А.В. Торможение роста бактерий в культурах Streptococcus pyogenes и Streptococcus agalac-tiae в присутствии катионов меди и цинка. Журн. микробиол. 2017, 3: 26-35.
  5. Bayle L., Chimalapati S., Schoehn G. et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Molec. Microbiol. 2011, 82 (4): 904-916.
  6. Botella H., Stadthagen G., Lugo-Villarino G. et al. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol. 2012, 20 (3): 106-112.
  7. Crane J.K., Byrd I.W., Boedeker E.C. Virulence inhibition by zinc of Shiga-toxigenic Escherichia coli. Infect. Immunity. 2011, 79 (4): 1696-1705.
  8. Crane J.K., Naeher T.M., Shulgina I. et al. Effect of zinc on enteropathogenic Escherichia coli infection. Infect. Immunity. 2007, 75 (12): 5974-5984.
  9. Dixon S.J., Lemberg K.M., Lamprecht M.R. et al. Ferroptosis: an iron-dependent form of non-apoptotic cell death. Cell. 2012, 149: 1060-1072.
  10. Dupont D.P., Duhamel G.E., Carlson M.P., Mathiesen M.R. Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: inhibition induced by zinc and copper. Vet. Microbiol. 1994, 41: 63-73.
  11. Huynh C., Andrews N.W. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell. Microbiol. 2008,10 (2): 293-300.
  12. Kirsten A., Herzberg M., Voigt A. et al. Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34. J. Bacteriol. 2011, 193 (18): 46524663.
  13. Kloosterman T.G., Witwicki R.M., van der Kooi-Pol M.M. et al. Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J. Bacteriol. 2008, 190 (15): 5382-5393.
  14. Lensbouer J.J., Patel A., Sirianni J.P., Doyle R.P. Functional characterization and metal ion specificity of the metal-citrate complex transporter from Strepromyces coelicolor. J. Bacteriol. 2008, 190 (16): 5616-5623.
  15. Nies D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51: 730750.
  16. Ong C.-I.Y., Walker M.J., McEwan A.G. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Scientific Reports. 2015, 5: 10 p.
  17. Remy L., Carriere M., Derre-Bobillot M. et al. The Staphylococcus aureus Opp1 ABC transporter impairs nickel and cobalt in zinc-depleted conditions and contributes to virulence. Molec. Microbiol. 2013, 87 (4): 730-743.
  18. Waldron K.J., Robinson N.J. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiol. 2009, 7 (1): 25-35.
  19. Wang P., Lutton A., Olesik J. et al. A novel iron- and copper-binding protein in the Lyme disease spirochaete. Molec. Microbiol. 2012, 86 (6): 1441-1451.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Cheknev S.B., Vostrova E.I., Kisil S.V., Sarycheva M.A., Vostrov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies