PROSPECTS AND PROBLEMS OF USING THE EFFECT OF SURFACE-ENHANCED RAMAN SCATTERING IN THE DIAGNOSIS OF VIRAL INFECTIONS
- Authors: Borisova O.V.1, Fayzuloev E.B.1, Marova A.A.1, Kukushkin V.I.2, Zverev V.V.1
-
Affiliations:
- Mechnikov Research Institute of Vaccines and Sera
- Institute of Solid State Physics
- Issue: Vol 94, No 3 (2017)
- Pages: 106-114
- Section: REVIEWS
- Submitted: 10.04.2019
- Published: 28.06.2017
- URL: https://microbiol.crie.ru/jour/article/view/168
- DOI: https://doi.org/10.36233/0372-9311-2017-3-106-114
- ID: 168
Cite item
Full Text
Abstract
About the authors
O. V. Borisova
Mechnikov Research Institute of Vaccines and Sera
Author for correspondence.
Email: noemail@neicon.ru
Россия
E. B. Fayzuloev
Mechnikov Research Institute of Vaccines and Sera
Email: noemail@neicon.ru
Россия
A. A. Marova
Mechnikov Research Institute of Vaccines and Sera
Email: noemail@neicon.ru
Россия
V. I. Kukushkin
Institute of Solid State Physics
Email: noemail@neicon.ru
Россия
V. V. Zverev
Mechnikov Research Institute of Vaccines and Sera
Email: noemail@neicon.ru
Россия
References
- Кукушкин В.И., Гришина Я.В., Егоров С.В., Соловьев В.В., Кукушкин И.В. Комбинированный диэлектрический и плазмонный резонанс для гигантского рассеяния света. Письма в ЖЭТФ. 2016, 8: 572-577.
- Bao Е, Yao J.L., Gu R.A. Synthesis of magnetic Ее20з/Аи core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir. 2009, 18: 10782-10787.
- Charles D.E., Aheme D., Gara M. et al. Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano, 2010, 1: 55-64.
- Chon H., Lee S., Son S.W. et al. Highly sensitive immunoassay of lung cancer marker carci-noembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal. Chem. 2009, 8: 3029-3034.
- Driscoll A.J., Harpster M.H., Johnson RA. The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges. Phys. Chem. Chem. Phys. 2013, 47: 20415-20433.
- Driskell J.D., Zhu Y, Kirkwood C.D. et al. Rapid and sensitive detection of rotavirus molecular signatures using surface enhanced Raman spectroscopy. PLoS One. 2010, 4: el0222.
- Fan C., Hu Z., Riley L.K. et al. Detecting food- and waterborne viruses by surface-enhanced Raman spectroscopy J. Food. Sci. 2010, 5: M302-307.
- Fleischmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters. 1974, 2: 163-166.
- He Y., Wang Y., Yang X. et al. Metal organic frameworks combining CoFe204 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal Pro-Brain natriuretic peptide. ACS Appl. Mater. Interfaces. 2016, 12: 7683-7690.
- Jia K., Khaywah M.Y., Li Y et al. Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films. ACS Appl. Mater. Interfaces. 2014, 1: 219-227.
- Jiang T., Wang X., Zhou J. et al. Hydrothermal synthesis of Ag@MSiC>2@Ag three core-shell nanoparticles and their sensitive and stable SERS properties. Nanoscale. 2016, 9: 4908-4914.
- Kaminska A., Witkowska E., Winkler K. et al. Detection of hepatitis В virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron. 2015, 461-467.
- Karnorachaia K., Sakamotoa K., Laochareonsukc R. et al. Extrinsic surface-enhanced Raman scattering detection of 1 influenza A virus enhanced by two-dimensional gold@silver core-shell nanoparticle arrays, RSC Advances. 2016, 6: 97791-97799.
- Khaywah M.Y, Jradi S., Louarn G. et al. Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates. J. Phys. Chem. 2015,46: 26091-26100.
- Lee J.H., Kim B.C., Oh B.K. et al. Rapid and sensitive determination of HIV-1 vims based on surface enhanced raman spectroscopy. J. Biomed. Nanotechnol. 2015, 12: 2223-2230.
- Lee K.E., Hesketh A.V., Kelly T.L. Chemical stability and degradation mechanisms of triangular Ag, Ag@Au, and Au nanoprisms. Phys. Chem. Chem. Phys. 2014, 24: 12407-12414.
- Li M., Kang J.W., Sukumar S. et al. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem. Sci. 2015, 7: 3906-3914.
- Lin Y.J., Wu C.Y., Li T. et al. A rapid and sensitive early diagnosis of influenza virus subtype via surface enhanced Raman scattering. J. Biosens Bioelectron. 2014, 5: 150.
- Lin H.Y., Huang C.H., Hsieh W.H. et al. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small. 2014, 22: 4700-4710.
- Luo Zh., Li W., Lu D. et al. A SERS-based immunoassay for porcine circovirus type 2 using multi-branched gold nanoparticles. Microchim. Acta. 2013, 180: 1501-1507.
- Neng J., Harpster M.H., Wilson W.C. et al. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens Bioelectron. 2013, 41: 316-321.
- Neng J., Harpster M.H., Zhang H. et al. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens Bioelectron. 2010, 3: 1009-1015.
- Netzer N.L., Qiu C., Zhang Y. et al. Gold-silver bimetallic porous nanowires for surface-enhanced Raman scattering. Chem. Commun. (Camb). 2011, 34: 9606-9608.
- Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997, 5303: 1102-1106.
- Nolan J.P., Duggan E., Liu E. et al. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods. 2012, 3: 272-279.
- Penn M.A., Drake D.M., Driskell J.D. Accelerated surface-enhanced Raman spectroscopy (SERS)-based immunoassay on a gold-plated membrane. Anal. Chem. 2013, 18: 8609-8617.
- Sheng R. Ni F., Cotton T.M. Determination of purine bases by reversed-phase high-performance liquid chromatography using real-time surface-enhanced Raman spectroscopy. Anal. Chem. 1991,5:437-442.
- Shin M.H., Hong W., Sa Y. et al. Multiple detection of proteins by SERS-based immunoassay with core shell magnetic gold nanoparticles. Vib. Spectrosc. 2014, 72: 44-49.
- Wang J., Wu X., Wang C. et al. Facile synthesis of au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl. Mater. Interfaces. 2016, 31: 19958-19967.
- Wigginton R.K., Vikesland P.J. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst. 2010, 6: 1320-1326.
- Wu L., Wang Z., Zong S. et al. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosens Bioelectron. 2012, 1: 94-99.
- Xu H., Bjemeld E., Kail M. et al. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 1999, 21: 4357-4360.
- Xu S., Ji X., Xu W. et al. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst. 2004, 1: 63-68.
- Yang Y., Shi J., Kawamurab G. et al. Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia, 2008, 58: 862-865.
- Zhan L., Zhen S.J., Wan X.Y et al. A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus. Talanta. 2016, 148: 308-312.
- Zhang C., Jiang S.Z., Yang C. et al. Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Sci. Rep. 2016, 6: 25243.
- Zhang X. Du X. Carbon nanodot-decorated Ag@Si02 nanoparticles for fluorescence and surface-enhanced raman scattering immunoassays. ACS Appl. Mater. Interfaces. 2016, 1: 1033-1040.