INHIBITION OF THE BACTERIAL GROWTH IN THE CULTURES OF STREPTOCOCCUS PYOGENES AND STREPTOCOCCUS AGALACTIAE IN PRESENCE OF COPPER AND ZINC IONS

Cover Page


Cite item

Full Text

Abstract

Aim. The work was performed with the purpose to study antibacterial action of millimolar concentrations of copper and zinc ions, used as sulfates or chlorides in the cultures of S.pyogenes and S.agalactiae. Materials and methods. Suspensions of the S.pyogenes and S.agalactiae bacteria which contained 108 CFU/ml were sown by the lawns into the standard Petri dishes coated with the supplemented Nutrient Agar. 30 min later the salt solutions of copper or zinc were added by the 5 pi drops on the surfaces of the lawns with use of 36-channel stamp replicator. The salt solutions contained copper or zinc at the concentrations ranged between 5xl0-3 M to 5xl0_1 M of the metals. Then the dishes containing bacterial cultures were incubated for 24 hrs at 37°C followed by measuring diameter of the area of culture growth inhibition. The probes of material obtained from the centers of the stunting areas were passed into the centrifuge tubes with the supplemented Nutrient Broth, incubated for up to five days at 37°C and tested for the Broth clarity. Results. In presence of the metal concentrations ranged between 50 to 500 mM the inhibitory action of zinc sulfate towards S.pyogenes bacteria was 1.5 - 1.7 times higher (p<0.001) than the action of copper sulfate. In presence of 100 and 500 mM of the metals the action of zinc chloride was 1.2 - 1.3 limes higher (p<0.05 - 0.1) than the effects of copper chloride. In presence of 100 and 500 mM of copper used as chloride its antibacterial action towards S.agalactiae bacteria was 8 - 13 per cent higher (p>0.1) than the effects of zinc chloride. Passages of the material obtained from the areas of culture growth inhibition demonstrate clarity of the Broth in 67 - 85 per cent (S.pyogenes) or 48 - 67 per cent (S.agalactiae) probes with samples from the areas treated with copper salts, and in 30 per cent probes with samples from the areas treated with the salts of zinc. Conclusion. Inhibitors’ action of copper and zinc ions used in millimolar concentrations in the cultures of S.pyogenes and S.agalactiae was established. S.pyogenes, bacteria demonstrate higher than S.agalactiae sensitivity to the action of zinc ions measured by the area of the growth inhibition. Also, in a comparison with S.agalactiae, the S.pyogenes bacteria undergo bactericidal action of zinc ions in a higher part of observations.

About the authors

S. B. Cheknev

Gamaleya Federal Research Center of Epidemiology and Microbiology

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

E. I. Vostrova

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

M. A. Sarycheva

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

S. V. Kisil

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

V. V. Anisimov

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

A. V. Vostrov

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: noemail@neicon.ru
Russian Federation

References

  1. Костюкова Н.Н., Бехало В А. Факторы патогенности пневмококка и их протективные свойства. Журн. микробиол. 2014, 3: 67-77.
  2. Чекнев С.Б., Вострова Е.И., Писковская Л.С., Востров А.В. Эффекты катионов меди и цинка, связанных белками у-глобулиновой фракции, в культуре Staphylococcus aureus. Журн. микробиол. 2014, 3: 4-9.
  3. Чекнев С.Б., ВостроваЕ.И., АлресоваМ.А., ПисковскаяЛ.С., Востров А.В. Торможение роста бактерий в культурах Staphylococcus aureus и Pseudomonas aeruginosa в присутствии катионов меди и цинка. Журн. микробиол. 2015, 2: 9-17.
  4. Чекнев С.Б., Вострова Е.И., Сарычева М.А., Востров А.В. Торможение роста бактерий в культурах Staphylococcus aureus и Pseudomonas aeruginosa катионами меди и цинка, примененными в физиологических концентрациях. Журн. микробиол. 2016, 3: 9-18.
  5. Avigad L.S., Bernheimer A.W. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents. Infect. Immunity. 1976, 13 (3): 1378-1381.
  6. Bayle L., Chimalapati S., Schoehn G. et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Molec. Microbiol. 2011, 82 (4): 904-916.
  7. Blencowe D.K., Morby A.P. Zn(II) metabolism in prokaryotes. FEMS Microbiol. 2003, 27: 291-311.
  8. Botella H., Stadthagen G., Lugo-Villarino G. et al. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol. 2012, 20 (3): 106-112.
  9. Dupont D.P., Duhamel G.E., Carlson M.P, Mathiesen M.R. Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: inhibition induced by zinc and copper. Vet. Microbiol. 1994, 41: 63-73.
  10. Hodgkinson V, Petris M.J. Copper homeostasis at the host-pathogen interface. J. Biol. Chemistry. 2012, 287 (17): 13549-13555.
  11. Hood M.I., Skaar E.P. Nutritional immunity: transition metals at the pathogen-host interface. Nature Rev. Microbiol. 2012, 10: 525-537.
  12. Joseph E.A. Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmac. Ther. 1980, 11:661-717.
  13. Krishnan K.C., Mukundan S., Figueroac J.A.L. et al. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications. Infect. Immunity. 2014,82 (7): 2992-3001.
  14. Phan T.N., Buckner T, Sheng J. et al. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 2004, 19(1): 31-38.
  15. Rajagopal L. Understanding the regulation of group В streptococcal virulence factors. Future Microbiol. 2009, 4 (2): 201-221.
  16. Rosado J.L. Zinc and copper: proposed fortification levels and recommended zinc compounds. J. Nutrition. 2003, 133 (Suppl.): 2985-2989.
  17. Russell T.M., Tang X., Goldstein J.M. et al. The salt-sensitive structure and zinc inhibition of Borrelia burgdorferi protease BbHtrA. Molecular Microbiol. 2016, 99 (3): 586-596.
  18. Shafeeq S., Kuipers O.P, Kloosterman T.G. The role of zinc in the interplay between pathogenic streptococci and their hosts. Molecular Microbiol. 2013, 88 (6): 1047-1057.
  19. Stafford S.L., Bokil N.J., Achard M.E.S. et al. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Bioscience Reports. 2013, 33 (4): 541-554.
  20. Wbston B.F., Brenot A., Caparon M.G. The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect. Immunity. 2009, 77 (7): 2840-2848.
  21. Whidbey C., Vornhagen J. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury. EMBO Mol. Med. 2015, 7: 488-505.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Cheknev S.B., Vostrova E.I., Sarycheva M.A., Kisil S.V., Anisimov V.V., Vostrov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies