ANTIMICROBIAL PEPTIDES OF LACTOBACILLI


Cite item

Full Text

Abstract

Data on antimicrobial peptides (AMP) of lactobacilli, mechanism of their damaging effect, chemical nature and genetic control are presented. Regardless of the source of isolation AMP of lactobacilli except reuterin are peptides with low molecular weight (4-6 kDa), differ from each other by chemical structure, sensitivity to temperature, effect of various enzymes, active at neutral or more frequently low pH. Especially important are mechanisms ensuring fine regulation of phenotypic expression of bacteriocin synthesis and formation of immunity against their effect. Activity and most importantly the level of their production depend on the conditions in which these bacteria are present and are controlled by a three-component regulation system. This system includes signal peptide (pheromone), sensory histidine kinase, regulator protein activating transcription. Resistance of the producer to the effect of its own bacteriocin is ensured by the so called immunity protein. AMP of lactobacilli are able to influence septoformation, peptidoglycan and protein synthesis, affect cytoplasmic membranes causing their destabilization. Stages of this damaging effect are described: interaction of effector peptides with the membrane of the sensitive cell, positioning of the peptide in the region of connection with protein receptor, submerging into the core of the spiral structure membranes with the formation of a pore and exhaustion of ATP pool leading to cell death. Protection from AMP is determined by specific proteins blocking pore formation in the membrane by direct binding of damaging molecules or their receptors. Perspectives of further studies of the role of antimicrobial peptides of lactobacilli are discussed.

About the authors

O. V Rybalchenko

St. Petersburg State University, Moscow, Russia

O. G Orlova

St. Petersburg State University, Moscow, Russia

V. M Bondarenko

Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia

References

  1. Блинкова Л.П. Бактериоцины: критерии, классификация, свойства, методы выявления. Журн. микробиол. 2003, 3: 109-113.
  2. Бондаренко В.М. Молекулярно-клеточные механизмы терапевтического действия про биотических препаратов. Фарматека. 2010, 2: 26-32.
  3. Бондаренко В.М., Мацулевич Т.В. Дисбактериоз кишечника как клинико-лабораторный синдром: современное состояние проблемы. М., ГЭОТАР-Медиа, 2007.
  4. Ермоленко Е.И., Рыбальченко О.В., Орлова О.Г. Роль лактобацилл в обеспечении защитных свойств организма человека. СПб, Турусел, 2010.
  5. Рыбальченко О.В., Бондаренко В.М., Вербицкая Н.Б. Проявление антагонистического действия бактериоциногенных Lactobacillus acidophilus на Klebsiella pneumoniae, Citrobacter freundii и Proteus mirabilis. Журн. микробиол. 2006, 7: 8-11.
  6. Рыбальченко О.В., Вербицкая Н.Б., Бондаренко В.М. Ультраструктурные изменения в клетках Shigella flexneri при взаимодействии с бактериоциногенными бактериями Lactobacillus acidophilus. Журн. микробиол. 2006, 4: 50-53.
  7. Рыбальченко О.В., Бондаренко В.М., Гуслева О.Р. и др. Дезорганизация биопленок клинических штаммов стафилококков метаболитами лактобацилл. Журн. микробиол. 2010, 6: 66-70.
  8. Рыбальченко О.В., Бондаренко В.М., Добрица В.П. Атлас ультраструктуры микробиоты кишечника человека. СПб, ИИЦ ВМА, 2008.
  9. Хмель И.А., Манохина И.М., Басюк Е.И. и др. Характеристика штаммов энтеробактерий, продуцирующих антибиотики широкого спектра действия -микроцины. Генетика. 1993, 5: 768-771.
  10. Alander M., Korpela R., Salexin M. et al. Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett.Appl.Microbiol.1997, 24 (5): 361-364.
  11. Barefoot S.F., Chen Y.R., Hughes T.A. et al. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactocin B. Appl. Environ. Microbiol. 1994. 60: 3522-3528.
  12. Belfiore C., Castellano P., Vignolo G. Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiol. 2007, 24 (3): 223-229.
  13. Bohle L.A. Brede D.A., Diep D.B. et al. Specific degradation of mucus adhesion-promoting protein (MapA) ofLactobacillus reuteri to an antimicrobial peptide. Appl. Environ. Microbiol. 2010, 76 (21): 7306-7309.
  14. Brarberg M.B., Nes J.F, Eijsink V.G. Feromone-induced production of antimicrobial peptides in Lactobacillus. Mol. Microbiol.1997, 26 (2): 347-360.
  15. Breukink E. A lession in efficient killing from two-component lantibiotics. Mol. microbiol. 2006, 61 (2): 271-273.
  16. Bron P.A., Grangette C., Mercenier A. et al. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J. Bacteriol. 2004, 186: 5721-5729.
  17. Corr S.C., Li Y, Riedel C.U. et al. Bacteriocin production as a mechanism for the antiinfec-tive activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA. 2007, 104 (18): 7617-7621.
  18. Deegan L.H., Cotter P.D., Hill C et al. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 2006, 16: 1058-1071.
  19. De Vries M.C. Analyzing global gene expression of Lactobacillus plantarum in the human gastrointestinal tract. Netherlands, Wageningen, 2006.
  20. De Vuyst L., Callewaert R., Crabbe K. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology. 1996, 142: 817-827.
  21. Diep D.B., Nes I.F. Ribosomally synthesized antibacterial peptides in grampositive bacteria. Curr. Drug Targets. 2002, 3: 107-122.
  22. Diep D.B., Axelsson L., Grefsti C. et al. The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology. 2000, 146: 2155-2160.
  23. Diep D.B., Straume D., Kjos M. et al. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides.2009, 30: 1562-1574.
  24. Drider D., Fimland G., Hechard Y et al. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 2006, 70 (2): 564-582.
  25. Dzung B.,Diep D.B., Skaugen M. et al. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc. Natl. Acad. Sci. USA. 2007, 104 (7): 2384-2389.
  26. Eijsink V.G., Axelsson L., Diep D.B. et al. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek. 2002, 81: 639-654.
  27. Hechard Y., Sahl H. G. Mode of action of modified and unmodified bacteriocins from gram-positive bacteria. Biochimie. 2002, 84: 545-557.
  28. Jack R.W., Tagg J.R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 1995, 59 (2): 171-200.
  29. Joerger M.C., Klaenhammer T.R. Characterization and purification ofhelveticin J and evidence for chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986, 167: 439-446.
  30. Kaiser A.L., Montville T.J. The influence of pH and growth rate on production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. J. Appl. Bacteriol. 1993, 75: 536-540.
  31. Kawai Y., Ishi Y., Uemura K. et al. Lactobacillus reuteri LA6 and Lactobacillus gasseri LA39 isolated from feces of the same human infant produce identical cyclic bacteriocin. Food Microbiol. 2001, 18 (4): 307-415.
  32. Kouakou P., Dortu C., Dubois-Dauphin R. et al. Plasmid-associated bacteriocin production by Lactobacillus LMG21688 suppresses Listeria monocytogenes growth rebound in a food system. FEMS Microbiol. Lett. 2010, 306 (1): 37-44.
  33. Leal-Sanchez M.V., Jimenez-Diaz R., Maldonado-Barragan A. et al. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPC010. Appl. Environ. Microbiol. 2002, 68(9): 4465-4471.
  34. Lebeer S., Vanderleydes G., De Keersmaecker S.C. Genes and molecules of lactobacillus supporting probiotic action. Microbiol. Mol. Biol. Rev. 2008, 72: 728-764.
  35. Lozo J., Vukasinovic M., Strahinic I. et al. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei BGBUK2-16. J. Food Prot. 2004, 67 (12): 2727-2734.
  36. Maldonado A., Ruiz-Barba. J.L., Jimenez-Diaz R. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from L. plantarum NC8. Appl.Environ.Microbiol., 2003, 69 (1): 383-389.
  37. Maldonado-Barragan A., Ruiz-Barba J.L., Jimenez-Diaz R. Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int. J. Food Microbiol. 2009, 130 (1): 35-42.
  38. Marco M.L., Bongers R.S., de Vos W.M. et al. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl. Environ. Microbiol. 2007, 73: 124-132.
  39. Mare L., Wolfaardt G.M., Dicks L.M. Adhesion of Lactobacillus plantarum 423 and Lactobacillus salivarius 241 to the intestinal tract of piglets, as recorded with fluorescent in situ hybridization (FISH), and production of plantaricin 423 by cells colonized to the ileum. J.Appl. Microbiol. 2006, 100 (4): 838-845.
  40. McAuliffe O., Ross R. P., Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol.Rev. 2001, 25: 285-308.
  41. Meijerink M., van Hemert S., Taverne N. et al. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendric cells using comparative genome hybridization.PLos ONE. 2005, 5 (5): e10632.doi:10.1371.
  42. Miller K.W., Ray P., Steinmetz T. et al. Gene organization and sequences of pediocin AcH/ PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett. Appl. Microbiol. 2005, 40 (1): 56-62.
  43. Muller D.M., Carrasco M.S., Tonarelli G.G. et al. Characterization and purification of a new bacteriocin with a broad inhibitory spectrum produced by Lactobacillus plantarum lp31 strain isolated from dry-fermented sausage. J.Appl.Microbiol.2009, 106 (6): 2031-2040.
  44. Muriana P.M., Klaenhammer T.R. Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity ofLactobacillus acidophillus 88. Appl. Environ. Microbiol. 1987, 53: 553-560.
  45. Nissen-Meyer J., Rogne P., Oppegard C. et al. Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr. Pharmaceut. Biotechnol. 2009, 10: 19-37.
  46. Ocana V.S, Nader-Macias E.M. Production of antimicrobial substances by lactic acid bacteria II: screening bacteriocin-producing strains with probiotic purposes and characterization of a Lactobacillus bacteriocin. Methods Mol. Biol. 2004, 268: 347-353.
  47. Oppegard C., Rogne P., Emanuelsen L. et al. The two-peptide class II bacteriocins: structure, production, and mode of action. J. Mol.Microbiol.Biotechnol.2007, 13 (4): 210-219.
  48. Oscariz J.C., Pissaboro A.G. Classification and mode of action of membrane-active bacteriocins produced by grampositive bacteria. Int.Microbiol. 2001, 4: 13-19.
  49. Papagianni M. Ribosomally synthesis peptides with antimicrobial properties: biosynthesis, structure, function and application. Biotechnol. Adv. 2003, 21 (6): 465-499.
  50. Riley M.A., Wertz J.E. Bacteriocins: evolution, ecology and application. Ann. Rev.Microbiol. 2002, 56: 117-137.
  51. Rivas-Santiago B., Serrano C.J., Enrico-Moreno J.A. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect.Immun. 2009, 77 (11): 4690-4695.
  52. Ross R.P., Galvin M., McAuliffe O. et al. Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek.1999,76: 337-346.
  53. Sablon E., Contreras B., Vandamme E. Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv.Biochem. Engineering Biotechnol. 2000, 68: 21-60.
  54. Sahl H.G., Bierbaum G. Lantibiotic: biosynthesis and biological activities ofuniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol. 1998, 52: 41-79.
  55. Simova E.D., Beshkova D.B., Dimitrov Zh.P. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria from traditional Bulgarian dairy products. J. Appl.Microbiol. 2009, 106 (2):692-701.
  56. Stephens S.K., Floriano B., Cathcart D.P. et al. Molecular analysis of the locus responsible for production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plan-tarum LPCO10. Appl. Environ. Microbiol. 1998, 64 (5): 1871-1877.
  57. Tagg J.R., Dajani A.S., Wannamaker N.W. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 1976, 40: 722-756.
  58. Ten B.B., Minekus M., Van Der Vassen et al. Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J. Appl. Bacteriol. 1994, 77: 140-148.
  59. Todorov S.D., Dicks L.M. Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J. Basic Microbiol. 2005, 45 (4): 312-322.
  60. Troost F.J., van Baarlen P., Lindsey P. et al. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS-1 in vivo. BMC Genomics. 2008, 9: 374.
  61. Tsapieva A., Duplik N., Suvorov A. Structure of plantaricin locus of Lactobacillus 8P-A3. Beneficial Microbes. 2011, 2 (4): 255-261.
  62. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implication for fundamental and biomedical research. Appl. Environ. Microbiol. 2008; 74 (16): 4985-4996.
  63. Willey J.M., van der Donk WA. Lantibiotics: peptides of diverse structure and function. Ann. Rev.Microbiol. 2007, 61: 477-501.
  64. Zamfir M., Grosa-Tudor S. Impact of stress condition on the growth of Lactobacillus acidophilus IBB-801 and production of acidophilin 801. J.Gen.Microbiol. 2009, 55 (4): 277282.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Rybalchenko O.V., Orlova O.G., Bondarenko V.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies