INTESTINAL-BRAIN AXIS. NEURONAL AND IMMUNE-INFLAMMATORY MECHANISMS OF BRAIN AND INTESTINE PATHOLOGY


Cite item

Full Text

Abstract

Mutually directed connections between intestine and brain are implemented by endocrine, neural and immune systems and nonspecific natural immunity. Intestine microflora as an active participant of intestine-brain axis not only influences intestine functions but also stimulates the development of CNS in perinatal period and interacts with higher nervous centers causing depression and cognitive disorders in pathology. A special role belongs to intestine microglia. Apart from mechanic (protective) and trophic functions for intestine neurons, glia implements neurotransmitter, immunologic, barrier and motoric functions in the intestine. An interconnection between intestine barrier function and hematoencephalic barrier regulation exists. Chronic endotoxinemia as a result of intestine barrier dysfunction forms sustained inflammation state in periventricular zones of the brain with consequent destabilization of hematoencephalic barriers and spread of inflammation to other parts of the brain resulting in neurodegradation development.

About the authors

V. M Bondarenko

Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia

E. V Ryabichenko

Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia

References

  1. Бондаренко В.М. Патогенетическая роль нарушенной микробиоты кишечника в полиорганной патологии пищеварительного тракта человека. Донозология. 2007, 1: 27-31.
  2. Бондаренко В.М., Лиходед В.Г. Распознавание комменсальной микрофлоры образраспознающими рецепторами в физиологии и патологии человека. Журн. микробиол. 2012, 3: 82-89.
  3. Бондаренко В.М., Рябиченко Е.В. Значение нервной системы при воспалительных заболеваниях кишечника. Журн. микробиол. 2011, 6: 101-106.
  4. Парфенов А.И., Бондаренко В.М. Что нам дал вековой опыт познания симбионтной кишечной микрофлоры. Архив патологии. 2012, 2: 21-25.
  5. Шендеров Б.А. «ОМИК»-технологии и их значение в современной профилактической и восстановительной медицине. Вестн. восстанов. мед. 2012, 3 (49): 70-78.
  6. Barajon I., Serrao G., Arnaboldi F. et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J. Histochem. Cytochem. 2009, 57 (11): 10131023.
  7. Bassotti G., Villanacci V., Fisogni S., et al. Enteric glial cells and their role in gastrointestinal motor abnormalities: Introducing the neuro-gliopathies. Gastroenterology. 2007, 13 (30): 4035-4041.
  8. Berthoud H.R. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil. 2008, 20 (Suppl. 1): 64-72.
  9. Bienenstock J., Collins S. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: psycho-neuroimmunology and the intestinal microbiota: clinical observations and basic mechanisms. Clin.Exp.Immunol. 2010, 160 (1): 85-91.
  10. Collins C.D., Purohit S., Podolsky R.H. et al. The application of genomic and proteomic technologies in predictive, preventive and personalized medicine. Vascul. Pharmacol. 2006, 45 (5): 258-267.
  11. DeLegge M.H., Smoke A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 2008, 23 (1): 35-41.
  12. Donato R., Sorci G., Riuzzi F. et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim. Biophys. Acta. 2009, 1793: 1008-1022.
  13. Gill S.R., Pop M., Deboy R.T. et al. Metagenomic analysis ofthe human distal gut microbiome. Science. 2010, 312 (5778): 1999-2002.
  14. Girillo C., Sarnelli G., Esposito G. et al. S100B protein in the gut: The evidence for enteroglial-susteined intestinal inflammation. World J.Gastroenterol. 2011, 17 (10): 1261-1266.
  15. Goehler L.E., Lyte M., Gaykema R.P Infection-induced viscerosensory signals from the gut enhance anxiety: implications for psychoneuroimmunology. Brain Behav. Immun. 2007, 21 (6): 721-726.
  16. Goodacre R. Metabolomics of a superorganism. J. Nutr. 2007, 137(1 Suppl): 259S-266S.
  17. Gordon J., Klaenhammer T.R. A rendezvous of our microbes. Proc. Natl. Acad. Sci. USA. 2011, 108 (Suppl.1): 4513-4515.
  18. Hanke M.L., Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin. Sci. 2011, 121: 367-387.
  19. Hermann A., Donato R.,Weiger T.M. et al. S100 calcium binding proteins and ion channels. Front. Pharmacol. 2012, 3:67-82.
  20. Khan M., Sakakima H., Dhammu T.S. et al. S-nitrosoglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats. J. Neuroinflammation. 2011, 8: 78-94.
  21. Kubera M.M., Leunis J.C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increase translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol. Lett. 2008, 29 (1): 117-124.
  22. Laflamme N., Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 2001, 15: 155-163.
  23. Lakhan S. E., Kirchgessner А. Neuroinflammation in inflammatory bowel disease. J. Neuroinflammation. 2010, 7: 37.
  24. Lee K.J., Tack J. Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 2010, 22 (5): 493-498.
  25. Nasser Y., Fernandez E., Keenan C.M. et al. Role ofenteric glia in intestinal physiology: effects ofthe gliotoxin fluorocitrate on motor and secretory function. Am.J.Physiol.Gastrointest. Liver Physiol. 2006, 291 (5): G912-927.
  26. Nelson K.E. Metagenomic of human body. Springer Media, 2011.
  27. Neufeld K.M., Kang N., Bienestock J. et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011, 23: 255-264.
  28. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO. 2006, 7 (7): 688-693.
  29. Otsubo H., Kondoh T., Shibata M. et al. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl. 2011, 196: 97103.
  30. Patino W.D., Main O.Y., Kang J.G. Circulating transcriptome reveals markers of atherosclerosis. Proc. Natl. Acad. Sci. USA. 2005, 102 (9): 3423-3428.
  31. Pflughoeft K.J., Versalovic J. Human microbiome in health and disease. Annu. Rev. Pathol. Mech. Dis. 2012, 7: 99-122.
  32. Savidge T.C., Sofroniew M.V. Starring roles for astroglia in barrier pathologies ofgut and brain. Labor. Investig. 2007, 87: 731-736.
  33. Sun J., Zheng J.H., Zhao M. Increased in vivo activation of microglia and astrocytes in the brains of mice transgenic for an infectious R5 human immunodeficiency virus type 1 provirus and for CD4-specific expression of human cyclin T1 in response to stimulation by lipopolysac-charides. J.Virol. 2008, 82 (11): 5562-5572.
  34. Turubaugh P.J., Ley R.E., Mahovald M.A. et al. An obesity gut microbiome with increased capacity for energy harvest. Nature. 2006, 444 (7122): 1027-1031.
  35. Willis C.L. Glia-induced reversible disruption ofblood-brain barrier integrity and neuropatho-logical response of the neurovascular unit. Toxicol. Pathol. 2011, 39 (1): 172-185.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Bondarenko V.M., Ryabichenko E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies