INTERSPECIES INTERACTION OF BACTERIAAND THE FORMATION OF MIXED (POLYMICROBIAL)BIOFILM
- Authors: Mayanskiy AN1, Chebotar' IV1, Evteeva NI1, Rudneva EI1, Mayansky AN2, Chebotar IV2, Evteeva NI2, Rudneva EI2
-
Affiliations:
- State Medical Academy, Nizhny Novgorod, Russia
- Issue: Vol 89, No 1 (2012)
- Pages: 93-101
- Section: Articles
- Submitted: 09.06.2023
- Published: 15.03.2012
- URL: https://microbiol.crie.ru/jour/article/view/13720
- ID: 13720
Cite item
Full Text
Abstract
Usually they are formed from various microorganism
species that interact with each other, have
shared metabolites, strengthen the attachment of
each other to the support substrate, provide expression
of «foreign» genes etc. Material on factors and
mechanisms that determine the formation of mixed
(polymicrobial) biofilms is analyzed in the review.
The significance of interspecies interaction between
bacteria based on QS system signal autoinductors
is underlined. Examples of humoral and
contact communications between bacteria and
eukaryotes including host cells are provided. Study
of polymicrobial processes and their interaction
with innate and adaptive immune response seems
important for further development of medical
microbiology (especially regarding chronic infectious
diseases).
Keywords
About the authors
A N Mayanskiy
I V Chebotar'
N I Evteeva
E I Rudneva
A N Mayansky
State Medical Academy, Nizhny Novgorod, RussiaState Medical Academy, Nizhny Novgorod, Russia
I V Chebotar
State Medical Academy, Nizhny Novgorod, RussiaState Medical Academy, Nizhny Novgorod, Russia
N I Evteeva
State Medical Academy, Nizhny Novgorod, RussiaState Medical Academy, Nizhny Novgorod, Russia
E I Rudneva
State Medical Academy, Nizhny Novgorod, RussiaState Medical Academy, Nizhny Novgorod, Russia
References
- Бехало В.А., Бондаренко В.М., Сысолятина Е.В., Нагурская Е.В. Иммунобиологические особенности бактериальных клеток медицинских биопленок. Журн. микробиол. 2010, 4: 97-105.
- Гинцбург А.Л., Ильина Т.С., Романова Ю.М. «Quorum sensing» или социальное поведение бактерий. Журн. микробиол. 2003, 5: 86-93.
- Маянский А.Н., Чеботарь И.В. Стафилококковые биопленки: структура, регуляция, отторжение. Журн. микробиол. 2011, 1: 101-108.
- Перунова Н.Б., Иванова Е.В. Влияние биофидобактерий на антилизоцимную активность микроорганизмов и их способность к образованию биопленок. Журн. микробиол. 2009, 4: 46-49.
- Abraham W.R. Controlling biofilms of grampositive pathogenic bacteria. Curr. Med. Chem. 2006, 13: 1509-1524.
- Armbruster C.E., Hong W., Pang B. et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media via interspecies quorum sensing. MBio. 2010, 1: 102-110.
- Bamford C.V., d'Mello A., Nobbs A.H. et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 2009, 77: 3696-3704.
- Bandara H.M., Yau J.Y., Watt R.M. et al. Pseudomonas aeruginosa inhibits in vitro Candida biofilm development. BMC Microbiol. 2010, 10: 125-136.
- Chang C.C., Merritt K. Effect of Staphylococcus epidermidis on adherence of Pseudomonas aeruginosa and Proteus mirabilis to polymethyl methacrylate (PMMA) and gentamicin-containing PMMA. J. Orthop. Res. 1991, 9: 284-288.
- Christopher A.B., Arndt A., Cugini C. et al. A streptococcal effector protein that inhits Porphyromonas gingivalis biofilm development. Microbiology. 2010, 156: 3466-3477.
- Chun C.K., Ozer E.A., Welsh M.J. et al. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA. 2004, 101: 3587-3590.
- Chung J., Ha E.S., Park H.R., Kim S. Isolation and characterization of Lactobacillus species inhibiting the formation of Streptococcus mutans biofilm. Oral Micribiol. Immunol. 2004, 19: 214-216.
- Cowan S.E., Gilbert E., Liepmann D. et al. Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl. Environ. Microbiol. 2000, 66: 4481-4485.
- Davies D.G., Marques C.N.H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 2009, 191: 1393-1403.
- Dong Y.H., Zhang L.H. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 2005, 43: 101-109.
- Duan K., Dammel C., Stein J. Et al. Modulation of Pseudomonas aeruginosa gene expression by host micro flora through interspecies communication. Mol. Microbiol. 2003, 50: 1477-1491.
- Federle M.J., Bassler B.L. Interspecies communication in bacteria. J. Clin. Invest. 2003, 112: 1291-1299.
- Filoche S.K., Anderson S.A., Sissons C.H. Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans. Oral. Microbiol. Immunol. 2004, 19: 322-326.
- Jarosz L.M., Dang D.M., van der Mei H.C. et al. Streptococcus mutans competence stimulating peptide inhibits Candida albicans hypha formation. Eukaryot. Cell. 2009, 8: 1658-1664.
- Kang M.S., Chung J., Kim S.M. et al. Effect of Weissella cibaria isolates on the formation of Streptococcus mutants biofilm. Caries Res. 2006, 40: 418-425.
- Kang M.S., Kang I.C., Kim S.M. et al. Effect of Leuconostoc spp. on the formation of Streptococcus mutans biofilm. J. Microbiol. 2007, 45: 291-296.
- Kaper J.B., Sperandio V. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect. Immun. 2005, 73: 3197-3209.
- Kapfhammer D., Karatan E., Pflughoeft K.J., Watnick P.I. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl. Environ. Microbiol. 2005, 71: 3840-3847.
- Kimura S., Tateda K., Ishii Y. et al. Pseudomonas aeruginosa Las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species. Microbiology. 2009, 155: 1934-1939.
- Kreth J., Zhang Y., Herzberg M.C. Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. J. Bacteriol. 2009, 191: 6281-6291.
- Kumada M., Motegi M., Nakao R. et al. Inhibiting effects of Enterococcus faecium nonbiofilm strain on Streptococcus mutans biofilm formation. J. Microbiol. Immunol. Infect., 42: 188-196.
- Lee J., Bansal Т., Jayaraman A. et al. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol. 2007, 73: 4100-4109.
- Li Y.H., Tang N., Aspiras M.B. et al. A quorumsensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 2002, 184: 2699-2708.
- Lopes S.P., Machado I., Pereira M.O. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships. J. Ind. Microbiol. Biotechnol. 2011, 38: 133-140.
- McAlester G., O'Gara F., Morrssey J. Signalmediated interactions between Pseudomonas aeruginosa and Candida albicans. J. Med. Microbiol. 2008, 57: 563-569.
- McNab R., Ford S.K., El-Sabaeny A. et al. LuxSbased signaling in Streptococcus gordonii: autoinducer-2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 2003, 185: 274-284.
- Nagaoka S., Hojo K., Murata S. et al. Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol. Lett. 2008, 281: 183-189.
- Periasamy S., Kolenbrander P.E. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late coloni zers of enamel. J. Bacteriol. 2009, 191: 6804-6811.
- Perry J.A., Cvitkovitch D.G., Levesque CM. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol. Lett. 2009, 299: 261-266.
- Qazi S., Middleton В., Muharram S.H. et al. Acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect. Immun. 2006, 74: 910-918.
- Rickard A.H., Palmer R.J., Blehert D.S. et al. Autoinducer 2: a cocentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 2006, 60: 1446-1456.
- Ryan R.P., Fouhy Y., Garcia B.F. et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol. 2008, 68: 75-86.
- Saito Y., Fujii R., Nakagawa K.I. et al. Stimulation of Fusobacterium nucleatum biofilm formation by Porphyromonas gingivalis. Oral Microbiol. Immunol. 2008, 23: 1-6.
- Simionato M.R., Tucker С.М., Kuboniwa M. et al. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect. Immun. 2006, 74: 6419-6428.
- Soderling E.M., Marttinen A.M., Haukioja A.L. Probiotic Lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Curr. Microbiol. 2010, 60: 181-189.
- Tamura S., Yonezawa H., Motegi M. et al. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral Microbiol. Immunol. 2009, 24: 152-161.
- Van Wamel W.J., Henrickx A.P., Bonten M.J. et al. Growth condition-dependent Esp expression by Enterococcus faecium affects initial adherence and biofilm formation. Infect. Immun. 2007, 75: 924-931.
- Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. 2006, 30: 274-291.
- Weimer K.E., Armbruster C.E., Juneau R.A. et al. Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease. J. Infect. Dis. 2010, 202: 1068-1075.
- Wen Z.T., Yates D., Ahn S.J., Burne R.A. Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dualspecies model. BMC Microbiol. 2010, 10: 111-120.
- Xie H., Lin X., Wang B.Y. et al. Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology. 2007, 153: 3228-3234.
- Yang F., Wang L.H., Wang J. et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 2005, 579: 3713-3717.
- Yoshida A., Ansai Т., Takehara Т. et al. LuxS-based signalling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 2005, 71: 2372-2380.