NEW APPROACHES TO THERAPY OF PERSISTENT INFECTIONS: ELIMINATION OF INTRACELLULAR CHLAMYDIA TRACHOMATIS BY EXPOSURE TO LOW TEMPERATURE ARGON PLASMA
- Authors: Ermolaeva SA1, Sysolyatina EV1, Kolkova NI1, Drobyashchenko MA1, Vasil'ev MM1, Tukhvatulin AI1, Petrov OF1, Naroditskiy BS1, Morfill GE1, Fortov VE1, Grigor'ev AI1, Zigangirova NA1, Gintsburg AL1
-
Affiliations:
- Issue: Vol 89, No 4 (2012)
- Pages: 33-37
- Section: Articles
- Submitted: 09.06.2023
- Published: 15.12.2012
- URL: https://microbiol.crie.ru/jour/article/view/13686
- ID: 13686
Cite item
Full Text
Abstract
partially ionized argon having macroscopic temperature of the environment against Chlamydia
trachomatis obligate intracellular parasites. Study viability of host cells in parallel. Materials and
methods. McCoy line cells infected with C. trachomatis (Bu-434/L2 strain) were exposed to LTP
obtained by using atmospheric pressure plasma SHF generator. Intracellular localization of chlamydiae
was visualized by luminescent microscopy. Results. Exposure of infected McCoy line cells
resulted in the destruction of chlamydia inclusions and practically complete elimination of intracellular
bacteria. At the same time LTP exposure did not result in immediate death of host cells,
an insignificant reduction of the number of cells was observed 24 hours after the exposure to LTP.
Conclusion. The effect of LTP for elimination of intracellular chlamydia without significant
changes in viability of eukaryotic host cells was demonstrated.
About the authors
S A Ermolaeva
E V Sysolyatina
N I Kolkova
M A Drobyashchenko
M M Vasil'ev
A I Tukhvatulin
O F Petrov
B S Naroditskiy
G E Morfill
V E Fortov
A I Grigor'ev
N A Zigangirova
A L Gintsburg
References
- Ермолаева С., Петров О., Миллер Г. и др. Перспективы использования низкотемпературной газовой плазмы как антимикробного агента. Вестн. РАМН. 2011, 10: 15-21.
- Энциклопедия низкотемпературной плазмы. В.Е. Фортов (ред.) М., Наука.
- Beagley K., Timms P. Chlamydia trachomatis infection: incidence, health costs and prospects for vaccine development. J. Reprod. Immunol. 2000, 48: 47-68.
- Ermolaeva S.A. , Varfolomeev A.F., Chernukha M.Y. et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 2011, 60: 75-83.
- Hammerschlag M.R. The intracellular life of chlamydiae. Semin. Pediatr. Infect Dis 2002, 13: 239-248.
- Kalghatgi S., Kelly C.M., Cerchar E. et al. Effects of non-thermal plasma on mammalian cells. PLoS ONE. 2011, 6: e16270.
- Kong M., Kroesen G., Morfill G. et al. Plasma medicine: an introductory review. New J. Phys. 2009, 11: 115012.
- Laroussi M., Mendis D., Rosenberg M. Plasma interaction with microbes. New J. Phys. 2003, 5: 41.1-41.10.
- Leduc M., Guay D., Leask R. et al. Cell permeabilization using a non-thermal plasma. New J. Phys. 2009, 11: 115021-115032.
- Sakai Y., Khajoee V., Ogawa Y. et al. A novel transfection method for mammalian cells using gas plasma. J. Biotechnol. 2006, 121: 299-308.
- Shimizu T. , Steffes B., Pompl R. et al. Characterization of microwave plasma torch for decontamination. Plasma Processes Polymers. 2008, 5: 577-582.