BACTERIAL BIOFILMS AS A NATURAL FORM OF EXISTENCE OF BACTERIA IN THE ENVIRONMENT AND HOST ORGANISM


Cite item

Full Text

Abstract

Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

Full Text

БАКТЕРИАЛЬНЫЕ БИОПЛЕНКИ КАК ЕСТЕСТВЕННАЯ ФОРМА СУЩЕСТВОВАНИЯ БАКТЕРИЙ В ОКРУЖАЮЩЕЙ СРЕДЕ И ОРГАНИЗМЕ ХОЗЯИНА
×

About the authors

Yu. M Romanova

Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia

A. L Gintsburg

Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia

References

  1. Бехало В.А., Бондаренко В.М., Сысолятина Е.В., Нагурская Е.В. Иммунобиологические особенности бактериальных клеток медицинских биопленок. Журн. микробиол. 2010,4: 97-105.
  2. Ильина Т.С., Романова Ю.М., Гинцбург А.Л. Коммуникации у бактерий. Мол. генет. микробиол. вирусол. 2006, 3: 22-29.
  3. Льюис К. Персистирующие клетки и загадка выживания биопленок. Биохимия. 2005, 70: 327-336.
  4. Романова Ю.М., Смирнова Т.А., Андреев А.Л. и др. Образование биопленок — пример «социального поведения» бактерий. Микробиология. 2006, 75: 1-6.
  5. Романова Ю.М., Алексеева Н.В., Смирнова Т.А. и др. Способность к формированию биопленок в искусственных системах у различных штаммов Salmonella typhimurium. Журн. ми- кробиол. 2006, 4: 38-42.
  6. Руководство по микробиологической диагностике инфекционных болезней. К.И.Матвеев, М.И.Соколов (ред.). М., Медицина, 1964.
  7. Смирнова Т. А., Диденко Л.В., Андреев А. Л. и др. Электронно-микроскопическое изучение биопленок, образуемых бактериями Burkholderia cepacia. Микробиология. 2008, 77: 63-70.
  8. Смирнова Т.А., Диденко Л.В., Азизбекян Р.Р., Романова Ю.М. Структурно-функциональная характеристика бактериальных биопленок. Там же. 2010, 79: 1-12.
  9. Степанова Т.А., Романова Ю.М., Алексеева Н.В. Разработка средств борьбы с биопленками: изучение воздействия полисахаридных лиаз на матрикс биопленок, образуемых Pseudomonas aeruginosa и Burkholderia cenocepacia. Лаборатория. 2010, 1: 44-49.
  10. Хмель И.А. Quorum sensing регуляция экспрессии генов: фундаментальные и прикладные аспекты, роль в коммуникации бактерий. Мол. биол. 2006, 75: 1-9.
  11. Хмель И.А., Метлицкая А.З. Quorum sensing регуляция экспрессии генов — перспективная модель для создания лекарств против патогенных бактерий. Там же. 2006, 40: 195-210.
  12. Branda S.S., Vik A., Friedman L., Kolter R. Biofilms: the matrix revised. Trends Microbial. 2005, 13: 21-25.
  13. Bockelmann U., Janke A.,Kuhn R. et al. bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol.Lett. 2006, 262: 31-38.
  14. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilm: a common cause of persistent infections. Science. 1999, 284: 318-322.
  15. Cuhna M.V., Sousa S.A., Leitao J.H. et al. Studies on the involment of the exopolyssacharide produced by cystic fibrosis—associated isolated of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infection. J. Clin. Mcrobiol. 2004: 3052-3058.
  16. Da Re S., Ghigo J-M. A CsgD-independent pathway for cellulose producton and biofilm formation Escherichia coli. J. Bacteriol. 2006, 188: 3073-3083.
  17. Davey M.E., O Toole G.A. Microbial biofilm: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000: 847-867.
  18. Donlan R. M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8: 1-20.
  19. Greiner L.L., Edwards J.L., Shao J. et al. Biofilm formation by Neisseria gonorrhoeae. Infect. Immun. 2005, 73: 1964-1970.
  20. Hentzer M., Teitzel G.M., Balzer G.J. et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 2001, 138: 5395-5401.
  21. Keren I. N., Shah D., Spoering A. et al. Specialized persisters cells and the mechanism of multidrug tolerance in Escherichia coli. Bacteriol. 2004, 186: 8172-8180.
  22. Latasa C., Solano C., Penades J.R., Lasa I. Biofilm-associated proteins. C.R. Biol. 2006, 329: 849-857.
  23. Miller M.B., Bassler B.L. Quorum sensing in bacteria. Ann. Rev. Microbiol. 2001, 55: 165-199.
  24. O’Toole G.A., Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998, 30: 295-304.
  25. Pier G. Pseudomonas aeruginosa: a key problem in cystic fibrosis. ASM News. 1998, 64: 339-347.
  26. Steinberger R.E., Holden P.A. Extracellular DNA in single- and multiple-species unsaturated biofilms.Appl. Environ. Microbiol. 2005, 71: 5404-5410.
  27. Zogaj X., Nimtz M., Ronde M. et al. The multicellular morphotypes of Salmonella typhimurium and E. coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 2001, 3: 1452-1463.
  28. Wai S.N., Mizunoe Y., Takade A. et al. Vibrio cholerae О1 strain TSI-4 produces the exopoly-saccharide materials that determine colony morphology, stress resistance, and biofilm forma- tion. Appl.Environ. Microbiol. 1998, 64: 3648-3655.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Romanova Y.M., Gintsburg A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies