USING REVERSE GENETICS METHOD FOR DEVELOPING RECOMBINANT STRAINS OF INFLUENZA VIRUSES ACCEPTABLE FOR USE AS LIVE ATTENUATED VACCINES


Cite item

Full Text

Abstract

Perspectives of using reverse genetics methods for constructing of recombinant influenza virus strains acceptable for use as live attenuated vaccines are discussed. Using of attenuated NSvectors of influenza virus opens possibilities for the development of recombinant vaccines with optimal ratio of immunogenicity and safety. Reverse genetics is applicable for development of effective vaccines against new pathogens such as highly pathogenic avian influenza A/H5N1.

Full Text

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ОБРАТНОЙ ГЕНЕТИКИ ДЛЯ ПОЛУЧЕНИЯ РЕКОМБИНАНТНЫХ ШТАММОВ ВИРУСА ГРИППА, ПРИГОДНЫХ В КАЧЕСТВЕ ЖИВЫХ АТТЕНУИРОВАННЫХ ВАКЦИН
×

About the authors

V. A Merkulov

Branch 48 of Central Research Institute of Ministry of Defense of Russian Federation — Virological Center, Sergiev Posad; Scientific-Manufacturing Organization «Microgen», Moscow, Russia

V. N Lebedev

Branch 48 of Central Research Institute of Ministry of Defense of Russian Federation — Virological Center, Sergiev Posad; Scientific-Manufacturing Organization «Microgen», Moscow, Russia

T. M Plekhanova

Branch 48 of Central Research Institute of Ministry of Defense of Russian Federation — Virological Center, Sergiev Posad; Scientific-Manufacturing Organization «Microgen», Moscow, Russia

V. A Maksimov

Branch 48 of Central Research Institute of Ministry of Defense of Russian Federation — Virological Center, Sergiev Posad; Scientific-Manufacturing Organization «Microgen», Moscow, Russia

S. A Korovkin

Branch 48 of Central Research Institute of Ministry of Defense of Russian Federation — Virological Center, Sergiev Posad; Scientific-Manufacturing Organization «Microgen», Moscow, Russia

A. N Mironov

Branch 48 of Central Research Institute of Ministry of Defense of Russian Federation — Virological Center, Sergiev Posad; Scientific-Manufacturing Organization «Microgen», Moscow, Russia

References

  1. Aldrovandi G.M., Gao L., Bristol G. et al. Regions of human immunodeficiency virus type 1 Nef required for function in vivo. J. Virol. 1998, 72: 7032—7039.
  2. Belslie R.В., Grubor W.С., Mendelman P.M. et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J. Infect. Dis. 2000, 181: 1133—1137.
  3. Belshe R., Lee M.S., Walker R.E. et al. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Exp. Rev. Vac. 2004, 3: 643—654.
  4. Bergmann M., Garcia-Sastre A., Carnero E. et al. Influenza virus NS1 protein counteracts PCR mediated inhibition of replication. Virol. 2000, 74: 6203—6206.
  5. Berlhet F.X., Rasmussen H., Roscnkrands I. et al. A Mycobacierium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CHI'-10). Microbiology. 1998, 144: 3195—3203.
  6. Beyer W.E., Palache A.M., de Jong J.С, Osterhaus A.D. Cold-adapted live influenza vaccine versus inactivated vaccine. P. systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy. A metaanalysis. Vaccine. 2002, 20: 1340—1353.
  7. Brodin I., Koscnkrands I., Andersen I. et al. ESAT-6 proteins. Protective antigens and virulence factors? Trends Microbiol. 2004, 12: 500—508.
  8. Cai H., D. Yu H., Tian X., Zhu Y.X. Coadministration of interleukin 2 plasmid DNA with combined DNA vaccines significantly enhances the protective efficacy against Mycobacterium tuberculosis. DNA Cell Biol. 2005, 24: 605—613.
  9. Cox R.J., Brokstad K.A., Ogra P. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol. 2004, 59: 1—15.
  10. Culmann-Penciolelli B.S., Lamhamedi-Cherradi I., Couillin N. et al. Identification of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodeficiency virus type I Nef protein. J. Virol. 1994, 68: 7336—7343.
  11. Dirch-Mnchin I., Rowan A., Pick J. Expression of the nonstructural protein NS1 of equine influenza A virus. Detection of anti-NS1 antibody in post infection equine sera. J. Virol. Meth. 1997, 65: 255—263.
  12. Donelan N.R., Basler С.F., Garcia-Sastre A.A recombinant influenza A virus expressing an RNA-bindingdefective NS1 protein induces high levels of beta interferon and is attenuated in mice. J. Virol. 2003, 77: 13257—13266.
  13. Egorov A., Garmashova L.M., Lnkasliok I.V. The NS gene—a possible determinant of apathogenicity of a cold-adapted donor of attenuation A/Lcningrad/134/47/57 and its reassortants. Vopr. Virusol. 1994, 39: 201—205.
  14. Egorov A., Brandt S., Screiaig S. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J. Virol. 1998, 72: 6437—6441.
  15. Enami M., Sharma G., Benham С., Palese P. An influenza virus containing nine different RNA segments. Virology. 1991, 85: 291—298.
  16. Falcon A.M., Fcrnandez-Scsnia A., Nakaya Y. et al. Attenuation and immunogenicity in mice of temperature sensitive influenza viruses expressinc truncated NS1 proteins. J. Gen.Virol. 2005, 86: 2817—2821.
  17. Ferko B., Stasakova J., Serening S. Hyperattenuated recombinant influenza A virus nonstructural-proteinencoding vectors induce human immunodeficiency virus type 1 nef-specific systemic and mucosal immune responses in mice. J. Virol. 2001, 5: 8899—8908.
  18. Ferko В., Stasakova J., Romanova J. et al. Immunogenicity and protection ellicacy of replication deficient influenza A viruses with altered NS1 genes. Ibid. 2004, 8: 13037—13045.
  19. Ferko B., Kittel C., Romanova J. et al. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenik potential in young and aged hosts. Ibid. 2006, 71: 11621—11627.
  20. Flynn J.L. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinburgh). 2004, 84: 93—101.
  21. Fodor E., Devenish L., Engelhaidt O. G. Rescue of influenza A virus from recombinant DNA. J. Virol. 1999, 73: 9679—9682.
  22. Fortes P., Beloso A., Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J. 1994, 13: 704—712.
  23. Gao L.Y., Guo S., McLaughlin B. et al. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis. bacterial spreadins and ESAT-6 secretion. Mol. Microbiol. 2004, 53: 1677—1693.
  24. Garcia-Sastre A., Palese P. Influenza virus vectors. Biologicals. 1995, 23: 171—178.
  25. Garcia-Sastre A., Egorov A., Malassov D. et al. Influenza A virus lacking the NSI gene replicates in interferondeficient systems. Virology. 1998, 252: 324—330.
  26. Garcia-Sastre A. Transfectant influenza viruses as antigen delivery vectors. Adv. Virus Res. 2000, 55: 579—597.
  27. Hatada E., Fitkuda R. Binding of influenza A virus NS1 protein to dsRNA in vitro. J. Gen. Virol. 1992, 73: 3325—3329.
  28. Kamath А.Т., Feng С.G., Macdonald M. et al. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect. Immun. 1999, 67: 1702—1707.
  29. Каufmann A., Salentin R., Meyer R.G. et al. Defense against influenza A virus infection. Potential role of the chemokine system. Immunobiology. 2001, 204: 603—613.
  30. Kestler T., Ringler J., Mori K. et al. Importance of the nef gene for mainte nance of high virus loads and for development of AIDS. Cell. 1991, 65: 651—662.
  31. Kirtel C., Ferko B., Kurz M. Generation of an influenza A virus vector expressing biologically active human interleukin-2 from the NS gene segment. Virology. 2005, 79: 10672—10677.
  32. Krug R.M., Yuan W., Noah D.L., Latham A.G. Intracellular warfare between human influenza viruses and human cells. The roles of the viral NS1 protein. Ibid. 2003, 309: 181—189.
  33. Lamb R.A., Choppin P.W. The gene structure and replication of influenza virus. Ann. Rev. Biochem. 1983, 52: 467—506.
  34. de la Luna S., Fortes P., Beloso A., Orlill J. Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J. Virol. 1995, 69: 2427—2433.
  35. Lu Y., Qian X.Y., Krug R.M. The influenza virus NS1 protein: a novel inhibitor of pre-mRNA splicing. Gen. Dev. 1994, 8: 1817—1828.
  36. Lyadora I.V., Vordermeier H.M., Eruslanov E.B. et al. Intranasal BCG vaccination protects BALB/c mice against virulent Mycobacterium bovis and accelerates production of IFN-gamma in their lungs. Exp. Immunol. 2001, 126: 274—279.
  37. Maassab H.F., Bryant M.L. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev. Med. Virol. 1999, 9: P. 237—244.
  38. Murasko D.M., Bernstein E.D., Gardner K.M. et al. Role of humoral and cell-mediated immunity in protection from influenza disease after immunization of healthy elderly. Exp.Gerontol. 2002, 37: 427—439.
  39. Neumann G., Fujii K., Kino Y., Kauaoka Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. USA. 2005, 102: 16825—16829.
  40. Noah D.I., Тwu K.Y., Krug R.M. Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3' end processing of cellular pre-mRNAs. Virology. 2003, 307: 386—395.
  41. Perrin P., Joffrel M.L., Leclerc С. et al. Interleukin 2 increases protection against experimental rabies. Immunobiology. 1988, 177: 199—209.
  42. Percy N., Barelay W.S., Garcia-Sastre A., Palese P. Expression of a foreign protein by influenza A virus. J. Virol. 1994, 68: 4486—4492.
  43. Pleschka S., Jaskunas R., Engelhardt O.G. et al. A plasmid-based reverse genetics system for influenza A virus. Ibid. 1996, 70: 4188—4192.
  44. Pym A.S., Brodin P., Majlcssi L. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 2003, 9: 533—539.
  45. Quinlivan M., Zamarin D., Garcia-Sastre A. et al. Attenuation of equine influenza viruses through truncations of the NS1 protein. J. Virol. 2005, 79: 8431—8439.
  46. Romanova J., Katinger D., Ferko B. Distinct host range of influenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specific glycosylation pattern. Virology. 2003, 307: 90—97.
  47. Sereinig S., Stukova M., Zabolotnyh N. Influenza virus NS vectors expressing the mycobacterium tuberculosis ESAT-6 protein induce CD4+ Thl immune response and protect animals against tuberculosis challenge. Clin. Vacc. Immunol. 2006, 13 (8): 898—904.
  48. Slasakova J., Ferko B., Kitlel C. et al. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1beta and 18. J. Gen. Virol. 2005, 86: 185—195.
  49. Talon J., Salvalore M., Re O.N. et al. Influenza A and В viruses expressing altered NS1 proteins. Proc. Natl. Acad. Sci. USA. 2000, 97: 4309—4314.
  50. Weinberg A., Merigan Т.С. Recombinant interleukin 2 as an adjuvant for vaccine-induced protection. Immunization of guinea pigs with herpes simplex virus subumt vaccines. J. Immunol. 1988, 140: P. 294—299.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2009 Merkulov V.A., Lebedev V.N., Plekhanova T.M., Maksimov V.A., Korovkin S.A., Mironov A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies