ПЕРСПЕКТИВЫ РАЗРАБОТКИ ЖИВЫХ РЕКОМБИНАНТНЫХ СИБИРЕЯЗВЕННЫХ ВАКЦИН НА ОСНОВЕ УСЛОВНО ПАТОГЕННЫХ И НЕПАТОГЕННЫХ МИКРООРГАНИЗМОВ
- Авторы: Попова П.Ю.1, Микшис Н.И.1
-
Учреждения:
- Российский научно-исследовательский противочумный институт «Микроб»
- Выпуск: Том 93, № 1 (2016)
- Страницы: 79-89
- Раздел: ОБЗОРЫ
- Дата подачи: 10.04.2019
- Дата публикации: 28.02.2016
- URL: https://microbiol.crie.ru/jour/article/view/15
- DOI: https://doi.org/10.36233/0372-9311-2016-1-79-89
- ID: 15
Цитировать
Полный текст
Аннотация
Живые генно-инженерные сибиреязвенные вакцины на платформе авирулентных и пробиотических микроорганизмов являются безопасной и адекватной альтернативой препаратам на основе аттенуированных штаммов Bacillus anthracis. Мукозальная аппликация приводит к непосредственному контакту вакцинных препаратов со слизистыми оболочками в тех органах и тканях макроорганизма, которые в первую очередь подвергаются воздействию патогена, приводя к развитию местного и системного иммунного ответа. Живые рекомбинантные сибиреязвенные вакцины могут применяться как самостоятельно, так и в схеме прайм-бустерной иммунизации. В обзоре сделан акцент на иммуногенных и протективных свойствах экспериментальных живых генно-инженерных препаратов, созданных на основе представителей родов Salmonella, Lactobacillus и аденовирусов.
Ключевые слова
Об авторах
П. Ю. Попова
Российский научно-исследовательский противочумный институт «Микроб»
Автор, ответственный за переписку.
Email: noemail@neicon.ru
Россия
Н. И. Микшис
Российский научно-исследовательский противочумный институт «Микроб»
Email: noemail@neicon.ru
Россия
Список литературы
- Микшис Н.И., Попова П.Ю., Кудрявцева О.М., Семакова А.П., Новикова Л.В., Кравцов А.Л., Бугоркова С.А., Щуковская Т.Н., Попов Ю.А., Кутырев В.В. Иммуногенность и безопасность прототипа химической сибиреязвенной вакцины на модели лабораторных животных. Журн. микробиол. 2014, 4: 22-30.
- Abboud N., Casadevall A. Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. Clin. Vaccine Immunol. 2008, 15 (7): 1115-1123.
- Alcock R., Cottingham M., Rollier C. et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci. Transl. Med. 2010, 2: 19ra12.
- Alemayehu D., Utt E., Knirsch C. Vaccines: A review of immune-based interventions to prevent and treat disease. J. Clinical Pharmacology. 2015, 55 (S3): S93-S102.
- Baillie L., Rodriguez A., Moore S. et al. Towards a human oral vaccine for anthrax: the utility of a Salmonella typhi Ty21a-based prime boost immunization strategy. Vaccine. 2008, 26 (48): 6083-6091.
- Beierlein J., Anderson A. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Curr. Med. Chem. 2011, 18 (33): 5083-5094.
- Chitlaru T., Altboum Z., Reuveny S., Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol. Rev. 2011, 239 (1): 221-236.
- Flick-Smith H., Walker N., Gibson P. et al. A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect. Immun. 2002, 70 (3): 1653-1656.
- Galen J., Pasetti M., Tennant S. et al. Salmonella enterica serovar Typhi live vector vaccines finally come of age. Immunol. Cell Biol. 2009, 87 (5): 400-412.
- Galen J., Chinchilla M., Pasetti M. et al. Mucosal immunization with attenuated Salmonella typhi expressing anthrax PA83 primes monkeys for accelerated serum antibody responses to parenteral PA83 vaccine. J. Infect. Dis. 2009, 199 (3): 326-335.
- Galen J., Curtiss R. The delicate balance in genetically engineering live vaccines. Vaccine. 2014, 32 (35): 4376-4385.
- Galen J., Wang J., Chinchilla M. et al. A new generation of stable, nonantibiotic, low-copy-number plasmids improves immune responses to foreign antigens in Salmonella enterica se-rovar Typhi live vectors. Infect. Immun. 2010, 78 (1): 337-347.
- Galen J., Zhao L., Chinchilla M. et al. Adaptation of the endogenous Salmonella enterica serovar Typhi clyA-encoded hemolysin for antigen export enhances the immunogenicity of anthrax protective antigen domain 4 expressed by the attenuated live-vector vaccine strain CVD 908-htrA. Infect. Immun. 2004, 72 (12): 7096-7106.
- Garmory H., Titball R., Griffin K. et al. Salmonella enterica serovar Typhimurium expressing a chromosomally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge. Infect. Immun. 2003, 71 (7): 3831-3836.
- Germanier R., Ftirer E. Characteristics of the attenuated oral vaccine strain S. typhi Ty 21a. Dev. Biol. Stand. 1983, 53: 3-7.
- Hashimoto M., Boyer J., Hackett N. et al. Induction of protective imunity to anthrax lethal toxin with a nonhuman primate adenovirus-based vaccine in the presence of preexisting antihuman adenovirus immunity. Infect. Immun. 2005, 73 (10): 6885-6891.
- Iacono-Connors L., Welkos S., Ivins B., Dalrymple J. Protection against anthrax with recombinant virus-expressed protective antigen in experimental animals. Infect. Immun. 1991, 59 (6): 1961-1965.
- Kalina W, Mohamadzadeh M. Lactobacilli as natural enhancer of cellular immune response. Discov. Med. 2005, 5 (26): 199-203.
- Kathania M., Zadeh M., Lightfoot Y. et al. Colonic immune stimulation by targeted oral vaccine. PLOS ONE. 2013, 8 (1): e55143.
- Kaur M., Bhatnagar R. Recent progress in the development of anthrax vaccines. Recent Pat. Biotechnol. 2011, 5 (3): 148-159.
- Kaur M., Singh S., Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev. Vaccines. 2013, 12 (8): 955-970.
- Krishnan V., Andersen B., Shoemaker C. et al. Efficacy and immunogenicity of single dose AdVAV intranasal anthrax vaccine compared to anthrax vaccine absorbed in a rabbit aerosolized spore challenge model. Clin. Vaccine Immunol. 2015, 22 (4): 430-439.
- Lamichhane A., Azegamia T., Kiyonoa H. The mucosal immune system for vaccine development. Vaccine. 2014, 32 (49): 6711-6723.
- Langley W, Bradley K., Li Z. et al. Induction of neutralizing antibody responses to anthrax protective antigen by using influenza virus vectors: implications for disparate immune system priming pathways. J. Virol. 2010, 84 (16): 8300-8307.
- Leckenby M., Spear A., Neeson B. et al. Enhanced vaccine antigen delivery by Salmonella using antibiotic-free operator-repressor titration-based plasmid stabilisation compared to chromosomal integration. Microbial Pathogenesis. 2009, 46: 201-206.
- Lee J., Groebner J., Hadjipanayis A. et al. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice. Vaccine. 2006, 24 (47-48): 6886-6892.
- Lee J., Hadjipanayis A., Welkos S. Venezuelan equine encephalitis virus-vectored vaccines protect mice against anthrax spore challenge. Infect. Immun. 2003, 71 (3): 1491-1496.
- Liu T., Oscherwitz J., Schnepp B. et al. Genetic vaccines for anthrax based on recombinant adeno-associated virus vectors. Molecular Therapy. 2009, 17 (2): 373-379.
- McConnell M., Hanna P, Imperiale M. Adenovirus-based prime-boost immunization for rapid vaccination against anthrax. Molecular Therapy. 2007, 15 (1): 203-210.
- McConnell M., Hanna P, Imperiale M. Cytokine response and survival of mice immunized with an adenovirus expressing Bacillus anthracis protective antigen domain 4. Infect. Immun. 2006, 74 (2): 1009-1015.
- Mohamadzadeh M. Induction of protective immunity against microbial challenge by targeting antigens expressed by probiotic bacteria to mucosal dendritic cells. Curr. HIV Res. 2010, 8 (4): 323-329.
- Mohamadzadeh M., Duong T., Hoover T. Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Rev. Vaccines. 2008, 7 (2):163-174.
- Mohamadzadeh M., Duong T., Sandwick S. et al. Dendritic cell targeting of Bacillus anthra-cis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. PNAS. 2009, 106 (11): 4331-4336.
- Mohamadzadeh M., Durmaz E., Zadeh M. , Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol. 2010, 5 (8): 1289-1296.
- Mohamadzadeh M., Klaenhammer T. Specific Lactobacillus species differentially activate Toll-like receptors and downstream signals in dendritic cells. Expert Rev. Vaccines. 2008, 7 (8): 1155-1164.
- Mohamadzadeh M., Olson S., Kalina W. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc. Natl. Acad. Sci. USA. 2005, 102 (8): 28802885.
- Osorio M., Wu Y., Singh S. Anthrax protective antigen delivered by Salmonella enterica sero-var Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infect. Immun. 2009, 77 (4): 1475-1482.
- Owen J., Sahay B., Mohamadzadeh M. New generation of oral mucosal vaccines targeting dendritic cells. Curr. Op. Chemical Biology. 2013, 17: 1-7.
- Petosa C., Collier R., Klimpel K. Crystal structure of the anthrax toxin protective antigen. Nature. 1997, 385: 833-838.
- Ramirez K., DitamoY, Galen J. Mucosal priming of newborn mice with S. typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection by passing maternal antibodies. Vaccine. 2010, 28 (37): 6065-6075.
- Rose M. Mucosal immunization in perspective. Hum. Vaccin. Immunother. 2014, 10 (7): 2115-2117.
- Sahay B., Owen J., Yang T. Activation of B-cells by a dendritic cell-targeted oral vaccine. Curr. Pharm. Biotechnol. 2013, 14 (10): 867-877.
- Shcherbinin D., Esmagambetov I., Noskov A. Protective immune response against Bacillus anthracis induced by intranasal introduction of a recombinant adenovirus expressing the protective antigen fused to the Fc-fragment of IgG2a. Acta Naturae. 2014, 6 (1): 76-84.
- Shivachandra S., Rao M., Janosi L. et al. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: a strategy for efficient display of large full-length proteins. Virology. 2006, 345 (1): 190-198.
- Stoeker L., Nordone S., Gunderson S. et al. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector. Clin. Vacc. Immunol. 2011, 18 (11): 1834-1844.
- Stokes M., Titball R., Neeson B. et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect. Immun. 2007, 75 (4): 1827-1834.
- Tan Y., Hackett N., Boyer J., Crystal R. Protective immunity evoked against anthrax lethal toxin after a single intramuscular administration of an adenovirus-based vaccine encoding humanized protective antigen. Hum. Gene Ther. 2003, 14 (17): 1673-1682.
- Tatsis N., Ertl H. Adenoviruses as vaccine vectors. Mol. Therapy. 2004, 10 (4): 616-629.
- Thomas J., Moen S., Gnade B. et al. Recombinant Sindbis virus vectors designed to express protective antigen of Bacillus anthracis protect animals from anthrax and display synergy with ciprofloxacin. Clin. Vacc. Immunol. 2009, 16 (11): 1696-1699.
- Tournier J., Mohamadzadeh M. Key roles of dendritic cells in lung infection and improving anthrax vaccines. Trends Mol. Med. 2010, 16 (7): 303-312.
- Wang M., Gao Z., Zhang Z. Roles of M cells in infection and mucosal vaccines. Hum. Vaccin. Immunother. 2014, 10 (12): 3544-3551.
- Wells J. Immunomodulatory mechanisms of lactobacilli. Microbial. Cell Factories. 2011, 10 (Suppl 1): S17.
- Xu D., Cisar J., Poly F. Genome sequence of Salmonella enterica serovar Typhi oral vaccine strain Ty21a. Genome Announc. 2013, 1 (4): e00650-13.
- Zhang J., Jex E., Feng T. et al. An adenovirus-vectored nasal vaccine confers rapid and sustained protection against anthrax in a single-dose regimen. Clin. Vacc. Immunol. 2013, 20 (1): 1-8.