МЕХАНИЗМЫ УСТОЙЧИВОСТИ ЭНТЕРОКОККОВ К АНТИМИКРОБНЫМ БЕЛКАМ И ПЕПТИДАМ


Цитировать

Полный текст

Аннотация

В обзоре описаны механизмы устойчивости бактерий рода Enterococcus к важнейшим факторам врожденного иммунитета хозяина - антимикробным белкам и пептидам. Представлены данные о лизоцимрезистентности энтерококков, связанной с модификацией пептидогликана и изменением сетевого заряда поверхности бактериальной клетки. Описана роль энтерококкового ƒ-фактора с экстрацитоплазматической функцией SigV. Приводятся свидетельства микробной инактивации/деградации ƒ-дефенсина нейтрофилов (HNP-1), антибактериального пептида LL-37, цекропина, ƒ-лизина (тромбоцитарного катионного белка). Накопленный экспериментальный материал обсуждается с позиции персистенции энтерококков - как патогенов, вызывающих различные инфекционные процессы, так и комменсалов, составляющих часть нормальной микрофлоры хозяина.

Об авторах

О В Бухарин

Институт клеточного и внутриклеточного симбиоза, Оренбург

Институт клеточного и внутриклеточного симбиоза, Оренбург

А В Валышев

Институт клеточного и внутриклеточного симбиоза, Оренбург

Институт клеточного и внутриклеточного симбиоза, Оренбург

Список литературы

  1. Билимова С.И. Характеристика биологических свойств энтерококков, выделенных от новорожденных детей: Автореф. дис. канд. мед. наук. Оренбург, 2002.
  2. Бухарин О.В., Валышев А.В. Микробные ингибиторы лизоцима. Журн. микробиол. 2006, 4: 8-13.
  3. Бухарин О.В., Валышев А.В. Биология и экология энтерококков. Екатеринбург, УрО РАН, 2011.
  4. Чертков К.Л. Характеристика биологических свойств энтерококков, выделенных из различных экотопов: Автореф. дис. канд. мед. наук. Орен бург, 2001.
  5. Bashyam M.D., Hasnain S.E. The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect. Genet. Evol. 2004, 4 (4): 301-308.
  6. Benachour A., Muller C., Dabrowski-Coton M. et al. The Enterococcus faecalis sigV protein is an extracytoplasmic function sigma factor contributing to survival following heat, acid, and ethanol treatments. J. Bacteriol. 2005, 187 (3): 1022-1035.
  7. Bera A., Herbert S., Jakob A. et al. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 2005, 55 (3): 778-787.
  8. Binks M.J., Fernie-King B.A., Seilly D.J. et al. Attribution of the various inhibitory actions of the streptococcal inhibitor of complement (SIC) to regions within the molecule. J. Biol. Chem. 2005, 280 (20): 20120-20125.
  9. Callewaert L., Aertsen A., Deckers D. et al. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog. 2008, 4 (3) : e1000019.
  10. Cederlund A., Gudmundsson G.H., Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J. 2011, 278 (20): 3942-3951.
  11. Deckers D., Masschalck B., Aertsen A. et al. Periplasmic lysozyme inhibitor contributes to lysozyme resistance in Escherichia coli. Cell. Mol. Life Sci. 2004, 61 (10): 1229-1237.
  12. Hebert L., Courtin P., Torelli R. et al. Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infect. Immun. 2007, 75 (11): 5390-5398.
  13. Herbert S., Bera A., Nerz C. et al. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog. 2007, 3 (7): e102.
  14. Kazmierczak M.J., Wiedmann M., Boor K.J. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 2005, 69 (4): 527-543.
  15. Koprivnjak T., Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell. Mol. Life Sci. 2011, 68 (13): 2243-2254.
  16. Kraus D., Peschel A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr. Top. Microbiol. Immunol. 2006, 306: 231-250.
  17. Kraus D., Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol. 2008, 3 (4): 437-451.
  18. Lehrer R.I., Lu W. ƒ-Defensins in human innate immunity. Immunol. Rev. 2012, 245 (1): 84-112.
  19. Le Jeune A., Torelli R., Sanguinetti M. et al. The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. PLoS One. 2010, 5 (3): e9658.
  20. Lonetto M.A., Brown K.L., Rudd K.E., Buttner M.J. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA. 1994, 91 (16): 7573-7577.
  21. Missiakas D., Raina S. The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol. 1998, 28 (6): 1059-1066.
  22. Park S.Y., Kim K.M., Lee J.H. et al. Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect. Immun. 2007, 75 (4): 1861-1869.
  23. Paulsen I.T., Banerjei L., Myers G.S. et al. Role of mobile DNA in the evolution of vancomycinresistant Enterococcus faecalis. Science. 2003, 299 (5615): 2071-2074.
  24. Peschel A., Jack R.W., Otto M. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 2001, 193 (9): 1067-1076.
  25. Peschel A., Otto M., Jack R.W. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 1999, 274 (13): 8405-8410.
  26. Pfeffer J.M., Strating H., Weadge J.T., Clarke A.J. Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state. J. Bacteriol. 2006, 188 (3): 902-908.
  27. Schmidtchen A., Frick I.M., Andersson E. et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 2002, 46 (1): 157-168.
  28. Schmidtchen A., Frick I.M., Bjorck L. Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol. Microbiol. 2001, 39 (3): 708-713.
  29. Shaw L.N., Lindholm C., Prajsnar T.K. et al. Identification and characterization of sigma s, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS One. 2008, 3 (12): e3844.
  30. Sorokin A., Bolotin A., Purnelle B. et al. Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. Microbiology. 1997, 143 (Pt 9): 2939-2943.
  31. Vollmer W., Tomasz A. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 2000, 275 (27): 20496-20501.
  32. Yother J., Trieu-Cuot P., Klaenhammer T.R., de Vos W.M. Genetics of streptococci, lactococci, and enterococci: review of the sixth international conference. J. Bacteriol. 2002, 184 (22): 6085-6092.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Бухарин О.В., Валышев А.В., 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах