EPIDEMIOLOGICAL ASPECTS AND MODERN EVOLUTION OF GLOBALLY SPREADING ARBOVIRUSES
- Authors: Zhukov K.V.1, Toporkov A.V.1, Viktorov D.V.1
-
Affiliations:
- Volgograd Research Institute for Plague Control
- Issue: Vol 95, No 6 (2018)
- Pages: 94-102
- Section: Articles
- Submitted: 10.04.2019
- Published: 28.12.2018
- URL: https://microbiol.crie.ru/jour/article/view/334
- DOI: https://doi.org/10.36233/0372-9311-2018-6-94-102
- ID: 334
Cite item
Full Text
Abstract
More than 100 species of arboviruses can cause diseases in humans. Arbovirus infections attract attention of medical specialist around the world due to their wide distribution, diversity and severity of the clinical course. The number of new arboviruses, which are pathogenic for humans and animals, is constantly increasing. In the last 30 years arbovirus infectious diseases have become a significant threat to public health. There are many large-scale outbreaks in various regions of the world every year. This article examines the current epidemic status, the main factors contributing to the expansion of areas with epidemic manifestations and the risks associated with the spread of a arbovirus transmitted by mosquitoes, such as dengue, chikungunya, Zika and the West Nile.
About the authors
K. V. Zhukov
Volgograd Research Institute for Plague Control
Author for correspondence.
Email: noemail@neicon.ru
Россия
A. V. Toporkov
Volgograd Research Institute for Plague Control
Email: noemail@neicon.ru
Россия
D. V. Viktorov
Volgograd Research Institute for Plague Control
Email: noemail@neicon.ru
Россия
References
- Попова А.Ю., Ежлова Е.Б., Демина Ю.В., Топорков А.В., Викторов Д.В., Смелянский В.П., Жуков К.В., Бородай Н.В., Шпак И.М., Куличенко А.Н., Михеев В.Н., Малеев В.В., Шипулин А.Г. Лихорадка Зика: состояние проблемы на современном этапе. Проблемы особо опасных инфекций. 2016, 1:5-12.
- Путинцева Е.В., Смелянский В.П., Пак В.А., Бородай Н.В., Жуков К.В., Мананков В.В., Погасий Н.И., Ткаченко Г.А., Лемасова Л.В., Леденева М.Л., Пакскина Н.Д., Викторов Д.В., Антонов В.А. Эпидемическая ситуация по лихорадке Западного Нила в 2014 г. в мире и на территории Российской Федерации и прогноз ее развития в 2015 г. Проблемы особо опасных инфекций. 2015, 1:36-41.
- Путинцева Е.В., Липницкий А.В., Алексеев В.В., Смелянский В.П., Антонов В.А., Мананков В.В., Погасий Н.И., Злепко А.В., Чайка А.Н., Крючкова Т.П., Савченко С.Т., Жуков К.В. Распространение лихорадки Западного Нила в мире и Российской Федерации в 2010 г. Проблемы особо опасных инфекций. 2011, 1(107):38-41.
- Al-Jabi S.W. Global research trends in West Nile virus from 1943 to 2016: a bibliometric analysis. Globalization and Health. 2017,13:55.
- Allison R. McMullen, Fiona J. May, Li Li et al. Evolution of New Genotype of West Nile Virus in North America. Emerging Infectious Diseases. 2011, 17(5):785-793.
- Barzon L., Papa A., Lavezzo E. et al. Phylogenetic characterization of Central/Southern European lineage 2 West Nile virus: Analysis of human outbreaks in Italy and Greece, 2013-2014. Clinical Microbiology and Infection. 2015, 21(12):1122.
- Beaver J.T., Lelutiu N., Habib R. et al. Evolution of two major Zika virus lineages: Implications for pathology, immune response, and vaccine development. Frontiers in Immunology. 2018, 9:1640.
- Blaney J.E., Johnson D. H., Firestone C.-Y. et al. Chemical Mutagenesis of Dengue Virus Type 4 Yields Mutant Viruses Which Are Temperature Sensitive in Vero Cells or Human Liver Cells and Attenuated in Mice. J. Virol. 2001, 75(20):9731-9740.
- Bray M., Men R., Tokimatsu I. et al. Genetic Determinants Responsible for Acquisition of Dengue Type 2 Virus Mouse Neurovirulence. J. Virol. 1998, 72(2):1647-1651.
- Chancey C., Grinev A., Volkova E. et al. The global ecology and epidemiology of West Nile virus. Biomed Res. Int. 2015, 2015:376230.
- Chao D.-Y., King C.-C., Wang W.-K. et al. Strategically examining the full-genome of dengue virus type 3 in clinical isolates reveals its mutation spectra. Virology Journal. 2005, 2:72.
- Chungue E., Cassar O., Drouet M.T. et al. Molecular epidemiology of dengue-1 and dengue-4 viruses. J. Gen. Virol. 1995, 76:1877-1884.
- David S., Abraham A.M. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen. Infect. Dis. 2016, 48(8):571-586.
- Dwivedi V.D., Tripathi I.P., Tripathi R.C. et al. Genomics, proteomics and evolution of dengue virus. Brief. Funct. Genomics. 2017, 16(4):217-227.
- Gamou F., Nicholas D.P., Martin F. et al. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLOS Neglected Tropical Diseases. 2017, 8:1-23.
- Gong Z., Xu X., Han G.-Z. The Diversification of Zika Virus: Are There Two Distinct Lineages? Genome Biology and Evolution. 2017, 9(11):2940-2945.
- Grubaugh N.D., G.D. Ebel. Dynamics of West Nile virus evolution in mosquito vectors. PMC. 2017, 1:1-13.
- Grubaugh N.D., Faria N.R., Andersen K.G. et al. Genomic Insights into Zika Virus Emergence and Spread. Cell. 2018, 172(6):1160-1162.
- Hesse R.R. Dengue Virus Evolution and Virulence Models. Clin. Infect. Dis. 2007, 44(11):1462-1466.
- Kawano H., Rostapshov V., Rosen L. et al. Genetic Determinants of Dengue Type 4 Virus Neurovirulence for Mice. Journal of Virology. 1993, 67(11):6567-6575.
- Ling Yuan, Xing-Yao Huang, Zhong-Yu Liu et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science. 2017, 7120:1-9.
- Liu Z., Zhou T., Lai Z. et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes as Zika virus vectors, China. Emerg. Infect. Dis. 2017, 23(7):1085-1091.
- Logan I.S. ZIKA - How fast does this virus mutate? Sci. Press Zool. Res. 2016, 37(2):110-115.
- Mann B.R., McMullen A.R., Swetnam D.M. et al. Molecular Epidemiology and Evolution of West Nile Virus in North America. International Journal of Environmental Research and Public Health. 2013, 10(10):5111-5129.
- McLean R.G., Ubico S.R., Docherty D.E. et al. West Nile Virus Transmission and Ecology in Birds. Ann. N. Y. Acad. Sci. 2006, 951(1):54-57.
- McMullen A.R., Albayrak H., May F.J. et al. Molecular evolution of lineage 2 West Nile virus. The Journal of General Virology. 2013, 94(2):318-325.
- Messina J.P., Brady O.J., Scott T.W. et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014, 22:138-146.
- Metsky H.C., Matranga C.B., Wohl S. et al. Zika virus evolution and spread in the Americas. Nature. 2017, 546(7658):411-415.
- Nishiura H., Halstead S.B. Natural History of Dengue Virus (DENV)-1 and DENV-4 Infections: Reanalysis of Classic Studies. J. Infect. Dis. 2007, 195(7):1007-1015.
- Parvez M.K., Parveen S. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology. 2017, 60(2):1-7.
- Perry J.W., ChenY., Speliotes E. et al. Functional Analysis of the Dengue Virus Genome Using An Insertional Mutagenesis Screen. J. Virol. 2018, 92:7.
- Pesko K.N., Ebel G.D. West Nile virus population genetics and evolution. Infection, genetics and evolution. Journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2012, 12(2):181-190.
- Petpole J.H., Compton B.W., Leimgruber P. et al. Modeling movement of West Nile virus in the Western hemisphere. Vector Borne Zoonotic Dis. 2006, 6:128-139.
- Pryor M.J., Azzola L., Wright P.J. et al. Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly. J. Gen. Virol. 2004, 85(12):30-36.
- Roehrig J.T., Butrapet S., Liss N.M. et al. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology. 2013. 441(2):114-125.
- Sahadeo N.S.D., Allicock O.M., Salazar P.M.D. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol. 2017, 3(1):1-10.
- Schwameis M., Buchtele N., Wadowski P.P. Chikungunya vaccines in development. Hum. Vaccines Immunother. 2016, 12(3):716-731.
- Screaton G., Mongkolsapaya J. Evolution of neurovirulent Zika virus. Science. 2017, 358(6365):863-864.
- Sessions O.M., Wilm A., Kamaraj U.S. et al. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints. Neglected Tropical Diseases. 2015, 9(9):37-41.
- Shi J., Su Z., Fan Z. et al. Extensive evolution analysis of the global chikungunya virus strains revealed the origination of CHIKV epidemics in Pakistan in 2016. Virol. Sin. 2017, 32(6):520-532.
- Vontas J., Kioulos E., Pavlidi N. et al. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic. Biochem. Physiol. 2012, 104(2):126-131.
- Vorou R. Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: What we know and what we should investigate urgently. Int. J. Infect. Dis. 2016, 48:85-90.
- Wang L., Valderramos G., Wu A. et al. Commentary From Mosquitos to Humans: Genetic Evolution of Zika Virus. Virus. Cell host & microbe. 2016, 19(5):561-565.
- Xia H., Luo H., Shan C. et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications. 2018, 9:1-13.
- Yokoyama S., Starmer W.T. Possible Roles of New Mutations Shared by Asian and American Zika Viruses. Molecular Biology and Evolution. 2017, 34(3):525-534.
- Zeller H., Bortel W.V., Sudre B. Chikungunya: Its History in Africa and Asia and Its Spread to New Regions in 2013-2014. J. Infect. Dis. 2016, 214(5):436-440.
- Zhang C., Mammen M.P., Chinnawirotpisan P. et al. Structure and age of genetic diversity of dengue virus type 2 in Thailand. J. Gen. Virol. 2006, 87(4):873-883.