CORYNEBACTERIUM: FEATURES OF THE STRUCTURE OF THE BACTERIAL CELL

Cover Page


Cite item

Full Text

Abstract

In a review of the features of the bacterial cells are Corynebacterium structure: characterized by an upper layer, highly organized cell wall, cytoplasmic membrane, cytoplasm, nucleoid. Described in detail the structure of the upper layer containing pili (fimbriae), microcapsule surface proteins - PS-2, DIP1281, 67-72r protein (hemagglutinin), porins, sialidase (neuraminidase). These components are the ability to initiate a serial of Corynebacterium work with the host cell, followed by colonization. It submitted a detailed description of the structure and functions of cell wall structures - cord factor, which is a second barrier permeability; arabinogalactan, peptidoglycan, lipomannan and lipoarabinomannan. The structure and function of the cytoplasmic membrane as the main diffusion barrier cell cytoplasm and the genome of Corynebacterium. Presented different molecular genetic methods for the identification and differentiation of closely related species of Corynebacterium.

About the authors

G. G. Kharseeva

Rostov-on-Don State Medical University

Author for correspondence.
Email: noemail@neicon.ru
Россия

N. A. Voronina

Rostov-on-Don State Medical University

Email: noemail@neicon.ru
Россия

References

  1. Заболотных М.В., Колычев Н.М., Трофимов И.Г. Фенотипические формы Соrуnе-bacterium pseudotuberculosis и их основные свойства. Современные проблемы науки и образования. 2012, 4: 72-76.
  2. Лабинская А.С., Костюкова Н.Н. Руководство по медицинской микробиологии. Оппортунистические инфекции: возбудители и этиологическая диагностика. М., Медицина, 2013.
  3. Alatoom А.А., Cazanave C.J., Cunningham S.A. et al. Identification of non-diphtheriae Corynebacterium by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012, 50: 160-163.
  4. Alderwick L.J., Radmacher E., Seidel M. et al. Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J. Biol. Chem. 2005, 280 (37): 32362-32371.
  5. Anantharaman V, Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biology. 2003, 4 (2): 11.
  6. Barocchi M.A., Ries J., Zogaj X. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. USA. 2006, 103 (8): 2857-2862.
  7. Bernard K.A., Funke G. Corynebacterium. Bergey’s Manual of Systematics of Archaea and Bacteria (Electronic resource) Ed. by William B. Whitman. New York, John Wiley & Sons, Ltd, Published Online: 18 mar. 2015. Mode of access: http://onlinelibrary.wiley.com/ doi/10.1002/9781118960608. gbm 00026/full. doi: 10.1002/9781118960608. gbm 00026 (24.04.2015).
  8. Bernard K.A. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50 (10): 3152-3158.
  9. Brown J.M., Frazier R.P., Morey R.E. et al. Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov. J. Clin. Microbiol. 2005, 43 (4): 1732-1737.
  10. Burkovski A. Cell envelope of Corynebacteria: structure and influence on pathogenicity. ISRN Microbiol. 2013. http://dx.doi.org/10.1155/2013/935736.
  11. Cerdeno-Tarraga A.M., Efstratiou A., Dover L.G. et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic. Acids. Res. 2003, 31 (22): 6516-6523.
  12. Costa-Riu N., Burkovski A., Kramer R. et al. PorA represents the major cell wall channel of the gram-positive bacterium Corynebacterium glutamicum. J. Bacteriol. 2003,185 (16): 4779-4786.
  13. Daffe M. The cell envelope of corynebacteria. In: Eggeling L., Bott M. (ed.). Handbook of Corynebacterium glutamicum. Boca Raton, Fla, USA, Taylor &Francis, 2005.
  14. Domer U., Schifller B. et al. Identification of a cell-wall channel in the corynemycolic acid-free Gram-positive bacterium Corynebacterium amycolatum. International Microbiology. 2009, 12(1): 29-38.
  15. Dramsi S., Trieu-Cuot Bieme P.H. Sorting sortases: a nomenclature proposal for the various sortases of Grampositive bacteria. Res. Microbiol. 2005, 156 (3): 289-297.
  16. Eggeling L., Gurdyal S.B., Alderwick L. Structure and synthesis of the cell wall. In: Corynebacteria. A. Burkovski (ed.). Caister Academic Press, Norfolk, UK, 2008, P. 267-294.
  17. Funke G., von Graevenitz A., Clarridge J.E. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 1997, 10 (1): 125-159.
  18. Gande R., Dover L.G., Krumbach K. The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J. Bacteriol. 2007, 189 (14): 5257-5264.
  19. Gebhardt H., Meniche X., Tropis M. The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacteriaceae. Microbiol. 2007, 153 (5): 1424-1434.
  20. Hansmeier N., Chao T.C., Kalinowski J. et al. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics. 2006, 6 (8): 2465-2476.
  21. Hiinten P, Costa-Riu N., Palm D. et al. Identification and characterization of PorH, a new cell wall channel of Corynebacterium glutamicum. Biochimica et Biophysica Acta. Biomembranes. 2005, 1715 (1): 25-36.
  22. KhamisA., Raoult D., B.LaScola. rpoB gene sequencing for identification of Corynebacterium species. J. Clin. Microbiol. 2004, 42 (9): 3925-3931.
  23. KuamazawaN., YanagawaR. Chemical properties of the pili of Corynebacterium renale. Infect. Immun. 1972, 5 (1): 27-30.
  24. MandlikA., Swierczynski A. Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008, 16 (1): 33-40.
  25. Marienfeld S., Uhlemann E.M., Schmid R. et al. Ultrastructure of the Corynebacterium glutamicum cell wal. Antonie van Leeuwenhoek. 1997, 72 (4): 291-297.
  26. Mattos-Guaraldi A.L., Formiga L.C.D., Pereira G.A. Cell surface components and adhesion in Corynebacterium diphtheria. Microbes Infect. 2000, 2 (12): 1507-1512.
  27. Mishra A.K., Krumbach K., Rittmann D. Lipoarabinomannanbiosynthesis in Corynebacteria-ceae: the interplay of two a(l-2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol. Microbiol. 2011, 80 (5): 1241-1259.
  28. Mishra A.K., Das A., Cisar J.O. Sortase catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol. 2007, 189: 3156-3165.
  29. Moreira L.O., Mattos-Guaraldi A.L., Andrade A.F.B. et al. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol. 2008, 19 (5): 521-530.
  30. Niederweis M., Danilchanka O., Huff J. et al. Mycobacterial outer membranes: in search of proteins. Trends Microbiol. 2010, 18 (3): 109-116.
  31. Ott L., Holler M. et al. Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiology. 2010, 10 (1): 2-10.
  32. Ott L., Holler M., Rheinlaender J. et al. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. [Electronic resource], BMC Microbiology. 2010, Vol.10. Article 257. Mode of access: doi: 10.1186/1471-2180-10-257. - 14.03.15.
  33. Paviour S., Musaad S., Roberts S. et al. Corynebacterium species isolated from patients with mastitis. Clin. Infect. Dis. 2002, 35 (11): 1434-1440.
  34. Radmacher E., Alderwick J., Besra G.S. Two functional FAS-I type fatty acid synthesis in Corynebacterium glutamicum. Microbiology. 2005, 151 (7): 2421-2427.
  35. Rheinlaender J., GrabnerA., Ott L. et al. Contour and persistence length of Corynebacterium diphtheriae pili by atomic force microscopy. Eur. Biophys. Journal. 2012, 41 (6): 561-570.
  36. Sabbadini P.S., Assis M.C., Trost E. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in Hep-2 cells. Microbial Pathogenesis. 2012, 52 (3): 165-176.
  37. Ton-That H., Schneewind O. Assembly of pili in Gram-positive bacteria. Trends Microbiol. 2004, 12 (5): 228-234.
  38. Ton-That H., Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol. Microbiol. 2003, 50 (4): 1429-1438.
  39. Tsuge Y., Ogino H., Teramoto H. et al. Deletion of cgR_1596 and cgR_2070, encoding NlpC/ P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum. J. Bacteriol. 2008, 190 (24): 8204-8214.
  40. Yang Y., Shi F., Tao G. et al. Purification and structure analysis of mycolic acids in Corynebacterium glutamicum. J. Bacteriol. 2012, 50 (2): 235-240.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Kharseeva G.G., Voronina N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies