GENETIC CHARACTERISTICS OF THE ADAPTIVE POTENTIAL OF BIFIDOBACTERIA IN THE BIOTOPE OF DISTAL HUMAN INTESTINE

Abstract

Aim. Determination of distinctive parameters of the B. bifidum and B. longum genomes, which characterizes their adaptive potential applied to distal intestine biotope of the human gut. Materials and methods. 5 strains of bifidobacteria have been used: B. bifidum ICIS-310, B. bifidum ICIS-643, B. bifidum ICIS-791, B. longum ICIS-505 (clinical isolates) и B. longum MC-42. Whole Genome Sequencing (WGS) has been performed by «MiSeq» DNA sequencer and «Nextera» DNA library preparation kit (Illumiina). Annotation and the primary analysis of known homologues gene content has been performed by RAST service (NMPDR). Results. B. bifidum ICIS-310 has not revealed lactose and galactose permease genes, that present in two other sequenced B. bifidum strains, but two exo-alph-sialidase genes has remained, as well as additional gene of DNA-methyltransferases family. Clinical isolates of B. longum has demonstrated a slightly more differences between each other: B. longum ICIS-505 strain contains more than 200 genes more than B. longum MC-42 reference strain, where are 29 genes - homologoues with known function. These genes are distributed uniformly by functional groups. Conclusion. Obtained data of genome analysis of the bifidobacteria reflect their specialization in occupied biotope and mutu-alistic reliability, determining dominance role of bifidoflora in human gut microsymbiocoenosis. Genome size, stability of signal census and predictability of reactions of the bifidobacteria allow to use them as a general model suitable for studying of symbiotic relations of human and his/her microbiota as well as construction of the experimental systems of intermicrobial interactions.

About the authors

S. V. Andryuschenko

Institute of Cellular and Intracellular Symbiosis

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

E. V. Ivanova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

N. B. Perunova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

O. V. Bukharin

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

A. V. Bekpergenova

Institute of Cellular and Intracellular Symbiosis

Email: noemail@neicon.ru
Russian Federation

References

  1. Бухарин О.В., Иванова Е.В., Перунова Н.Б., Чайникова И.Н., Андрющенко С.В. Метаболический профиль бифидофлоры при различных микроэкологических состояниях биотопа толстого кишечника человека. Журн. микробиол. 2017, 1: 3-11.
  2. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979, 6: 1513-1523.
  3. Claesson M.J., Cusack S., O’Sullivan O. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. PNAS. 2011, 1: 4586-4591.
  4. Galperin M.Y A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts. BMC Microbiology. 2005, 5: 35.
  5. Galperin M.Y., Higdon R., Kolker E. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol. BioSyst. 2010, 6: 721-728.
  6. Gelber S.E., Aguilar J.L., Lewis K.L. Functional and phylogenetic characterization of Vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J. Bacteriol. 2008, 11: 3896-3903.
  7. Godson G.N., Vapnek D. A simple method of preparing large amounts of phiX174 RF 1 supercoiled DNA. Biochim Biophys Acta. 1973, 4: 516-520.
  8. Ku S., Park M.S., Ji G.E., Ybu H.J. Review on Bifidobacterium bifidum BGN4: Functionality and Nutraceutical Applications as a Probiotic Microorganism. Int.J. Mol.Sci. 2016, 9: 1544.
  9. Maukonen J., Simхes C., Saarela M. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol. Ecol. 2012, 3: 697-708.
  10. Milani C., Turroni F., Duranti S. et al. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment. Appl. Environ. Microbiol. 2015, 4: 980-991.
  11. O’Callaghan A., van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7: 925.
  12. Ott S.J., Musfeldt M., Timmis K.N. et al. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagn. Microbiol. Infect. Dis. 2004, 4: 237-245.
  13. Tavender T.J., Halliday N.M., Hardie K.R. et al. LuxS-independent formation of AI-2 from ribulose-5-phosphate. BMC Microbiol. 2008, 8: 98.
  14. Ventura M., Turroni F., Lugli G.A. et al. Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J.Sci.Food.Agric. 2014, 94: 163-168.
  15. WolfY.I., Koonin E.V. Genome reduction as the dominant mode ofevolution. Bioessays. 2013, 9: 829-837.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Andryuschenko S.V., Ivanova E.V., Perunova N.B., Bukharin O.V., Bekpergenova A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies