СЕРОТИПНЕЗАВИСИМЫЕ ВАКЦИНЫ ПРОТИВ ПНЕВМОКОККОВОЙ ИНФЕКЦИИ

Обложка


Цитировать

Полный текст

Аннотация

Создание серотипнезависимых вакцин включает в себя четыре направления - конструирование белковых вакцин на основе рекомбинантных белков пневмококка, цельноклеточных убитых и аттенуированных вакцин, ДНК-вакцин и использование белков Streptococcus pneumoniae в качестве носителя для полисахаридных и конъюгированных вакцинных препаратов. Наиболее широко изученными являются белковые вакцины. У пневмококка описано около 20 белков - внутриклеточные, связанные с клеточной стенкой и секретируемые. Большинство исследователей останавливаются на конструировании вакцинного препарата, включающего набор нескольких белков, защищающих от колонизации, инвазии, пневмонии. Механизм действия белковых вакцин отличается от такового полисахаридных. Белковые препараты создают защиту от нескольких серотипов пневмококка. Актуальным для доклинических испытаний является исследование перекрестной активности белков-кандидатов в вакцинные препараты с тканями организма человека. Для вакцин из белков пневмококка необходимо подобрать адъюванты, так как гидроксид алюминия не является подходящим адъювантом для этих препаратов.

Об авторах

И. Б. Семенова

НИИ вакцин и сывороток им. И.И.Мечникова

Автор, ответственный за переписку.
Email: noemail@neicon.ru
Россия

Н. А. Михайлова

НИИ вакцин и сывороток им. И.И.Мечникова

Email: noemail@neicon.ru
Россия

Список литературы

  1. Воробьев Д.С., Семенова И.Б. Пневмококковый поверхностный белок А и новые подходы к разработке пневмококковых вакцин. Журн. микробиол. 2011, 6: 107-113.
  2. Воробьев Д.С., Семенова И.Б., Курбатова Е.А. Белки Streptococcus pneumoniae: перспективы для создания вакцины против пневмококковой инфекции. Журн. микробиол. 2010, 6: 98-103.
  3. Костюкова Н.Н., Бехало В.А. Факторы патогенности пневмококка и их протективные свойства. Журн. микробиол. 2014, 3:67-77.
  4. Курбатова Е.А., Воробьев Д.С., Егорова Н.Б., Батуро А.П., Романенко Э.Е., Маркова М.Е., Елкина С.И., Волох Ю.В., Цветков Ю.Е., Сухова Е.В.,ЯшунскийД.В.,Нифантьев Н.Э., МихайловаН.А. Штаммовые различия внутривидовой иммуногенной активности антигенных компонентов Streptococcus pneumoniae. Журн. микробиол. 2013, 5: 60-69.
  5. Нисилевич В.Ф., Пугачева Н.Л., Падюков Л.Н., Грубер И.М., Решилов Л.Н. Сравнительный анализ антигенных препаратов из некапсульных штаммов пневмококка. Журн. микробиол. 1987, 1: 8-12.
  6. Barazzone G.C, Pinto V., Donnarumma D. et al. Identification of glycosylated regions in pneumococcal PspA conjugated to serotype 6B capsular polysaccharide. Glycoconj. J. 2014, 31 (3): 259-269.
  7. Butler J.C, Shapiro E.D., Carlone G.M. Pneumococcal vaccines: history, current status, and future directions. Am. J. Med. 1999, 107 (1A): 69S-76S.
  8. Cao J., Gong Y., Dong S. et al. Pneumococcal ClpP modulates the maturation and activation of human dendritic cells: implications for pneumococcal infections. J. Leukoc. Biol. 2013, 93 (5): 737-749.
  9. Cao J., Zhang X., Gong Y. et al. Protection against pneumococcal infection elicited by immunization with multiple pneumococcal heat shock proteins. Vaccine. 2013, 31 (35): 3564-3571.
  10. Croucher N.J., Chewapreecha C., Hanage W.P. et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome. Biol. Evol. 2014,6(7): 1589-1602.
  11. Darrieux M., Goulart C., Briles D., Leite L.C. Current status and perspectives on protein-based pneumococcal vaccines. Crit. Rev. Microbiol. 2015, 41 (2): 190-200.
  12. Feldman C., Anderson R. Review: current and new generation pneumococcal vaccines. J. Infect. 2014, 69 (4): 309-325.
  13. Ferreira D.M, Areas A.P., Darrieux M. et al. DNA vaccines based on genetically detoxified derivatives of pneumolysin fail to protect mice against challenge with Streptococcus pneumoniae. FEMS. Immunol. Med. Microbiol. 2006, 46 (2): 291-297.
  14. Ferreira D.M., Miyaji E.N., Oliveira M.L. et al. DNA vaccines expressing pneumococci surface protein A (PspA) elicit protection levels comparable to recombinant protein. J. Med. Microbiol. 2006, 55 (4): 375-378.
  15. Ginsburg A.S., Nahm M.H., Khambaty F.M., Alderson M.R. Issues and challenges in the development of pneumococcal protein vaccines. Expert. Rev. Vaccines. 2012, 11 (3): 279-285.
  16. Gonsalves V.M., Dias W.O., Campos I.B. et al. Development of a whole cell pneumococcal vaccine: BPL inactivation, cGMP production, and stability. Vaccine. 2014, 32 (9): 1113-1120.
  17. Hilty M., Wtithrich D., Salter S.J. et al. Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol. Evol. 2014, 6 (12): 3281-3294.
  18. Hotomi M.,TogawaA., Kono M. etal. PspA family distribution, antimicrobial resistance and serotype of Streptococcus pneumoniae isolated from upper respiratory tract infections in Japan. PLoS One. 2013, 8 (3): e58124.
  19. Janoir C., Cohen R., Levy C. et al. Clonal expansion of the macrolide resistant ST386 within pneumococcal serotype 6C in France. PLoS One. 2014, 9 (3): e90935.
  20. Kamtchoua T., Bologa M., Hopfer R. et al. Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD 1 in a single-antigen protein vaccine candidate in adults. Vaccine. 2013,31 (2): 327-333.
  21. Katsura H., Piao Z., Iwatsuki-Horimoto K. et al. A bivalent vaccine based on a replication-incompetent influenza virus protects against Streptococcus pneumoniae and influenza virus infection. J. Virol. 2014, 88 (22): 13410-13417.
  22. Kim T.H, Johnstone J., Loeb M. Vaccine herd effect. Scand. J. Infect. Dis. 2011, 43 (9): 683-689.
  23. Leroux-Roels G., Maes C., De Boever F. et al. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study. Vaccine. 2014, 32 (50): 6838-6846.
  24. Liu Y., Wang H., Zhang S. et al. Mucosal immunization with recombinant fusion protein DnaJ-AA146Ply enhances cross-protective immunity against Streptococcus pneumoniae infection in mice via interleukin 17A. Infect. Immun. 2014, 82 (4): 1666-1675.
  25. Lu J., Sun T, Hou H. et al. Detoxified pneumolysin derivative Plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines. Immunol. Invest. 2014, 43 (7): 717-726.
  26. Miyaji E.N., Ferreira D.M., Lopes A.P. et al. Analysis of serum cross-reactivity and crossprotection elicited by immunization with DNA vaccines against Streptococcus pneumoniae expressing PspA fragments from different clades. Infect. Immun. 2002, 70 (9): 5086-5090.
  27. Miyaji E.N., Oliveira M.L., Carvalho E., Ho PL. Serotype-independent pneumococcal vaccines. Cell. Mol. Life. Sci. 2013, 70 (18): 3303-3326.
  28. Moffitt K., Howard A., Martin S. et al. TH17-mediated protection against pneumococcal carriage by a whole cell vaccine is dependent on Toll-like receptor 2 and surface lipoproteins. Clin. Vaccine Immunol. 2015, 22 (8): 909-916.
  29. Moore Q.C., Bosarge J.R., Quin L.R., McDaniel L.S. Enhanced protective immunity against pneumococcal infection with PspA DNA and protein. Vaccine. 2006, 24 (29-30): 5755-5761.
  30. Piao Z., Akeda Y., Takeuchi D. et al. Protective properties of a fusion pneumococcal surface protein A (PspA) vaccine against pneumococcal challenge by five different PspA clades in mice. Vaccine. 2014, 32 (43): 5607-5613.
  31. Pichichero M.E. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum. Vaccin. Immunother. 2013, 9 (12): 2505-2523.
  32. PlumptreC. D., Ogunniyi A. D., Paton J. C. Surface association ofPht proteins of Streptococcus pneumoniae. Infect. Immun. 2013, 81 (10): 3644-3651.
  33. Pope C., Oliver E.H, Ma J. et al. Genetic conjugation of components in two pneumococcal fusion protein vaccines enhances paediatric mucosal immune responses. Vaccine. 2015,30; 33 (14): 1711-1718.
  34. Prymula R., Pazdiora P., Traskine M. et al. Safety and immunogenicity of an investigational vaccine containing two common pneumococcal proteins in toddlers: a phase II randomized clinical trial. Vaccine. 2014, 23; 32 (25): 3025-3034.
  35. Rosch J.W. Promises and pitfalls of live attenuated pneumococcal vaccines. Hum. Vaccin. Immunother. 2014, 10 (10): 3000-3003.
  36. Salcedo-Rivillas C., Debrie A.S., Miyaji E.N. et al. Pertussis toxin improves immune responses to a combined pneumococcal antigen and leads to enhanced protection against Streptococcus pneumoniae. Clin. Vaccine. Immunol. 2014, 21 (7): 972-981.
  37. Saxena S., Khan N., Dehinwal R. et al. Conserved surface accessible nucleoside ABC transporter component SP0845 is essential for pneumococcal virulence and confers protection in vivo. PLoS One. 2015, 17; 10 (2): eOl 18154.
  38. Schachem P.A, Tsuprun V., Ferrieri P. et al. Pneumococcal PspA and PspC proteins: potential vaccine candidates for experimental otitis media. Int. J. Pediatr. Otorhinolaryngol. 2014, 78 (9): 1517-1521.
  39. Shak J.R., Ludewick H.P., Howery K.E. et al. Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. MBio. 2013, 4 (5): e00655-13.
  40. Talukdar S., Zutshi S., Prashanth K.S. et al. Identification of potential vaccine candidates against Streptococcus pneumoniae by reverse vaccinology approach. Appl. Biochem. Biotechnol. 2014, 172 (6): 3026-3041.
  41. Tarahomjoo S. Recent approaches in vaccine development against Streptococcus pneumoniae. J. Mol. Microbiol. Biotechnol. 2014, 24 (4): 215-227.
  42. Uraki R., Piao Z., Akeda Y. et al. A bivalent vaccine based on a PB2-knockout influenza virus protects mice from secondary pneumococcal pneumonia. J. Infect. Dis. 2015, 212 (12): 1939-1948.
  43. Vadesilho C.F., Ferreira D.M., Gordon S.B. et al. Mapping of epitopes recognized by antibodies induced by immunization of mice with PspA and PspC. Clin. Vaccine. Immunol. 2014, 21 (7): 940-948.
  44. fecchiS., Bufali S., UnoT. et al. Conjugation ofaTLR7 agonist and antigen enhances protection in the S. pneumoniae murine infection model. Eur. J. Pharm. Biopharm. 2014, 87 (2): 310-317.
  45. Verhoeven D., Perry S., Pichichero M.E. Contributions to protection from Streptococcus pneumoniae infection using the monovalent recombinant protein vaccine candidates PcpA, PhtD, and PlyD 1 in an infant murine model during challenge. Clin. Vaccine. Immunol. 2014, 21 (8): 1037-1045.
  46. Verhoeven D., Xu Q., Pichichero M.E. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyDl protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vhccine. 2014, 30; 32 (26): 3205-3210.
  47. Vintim E.O., Medina M. Immune response in nasopharynx, lung, and blood elicited by experimental nasal pneumococcal vaccines containing live or heat-killed lactobacilli as mucosal adjuvants. J. Physiol. Pharmacol. 2014, 92 (2): 124-131.
  48. Wilson R., Cohen J.M., Jose R.J. et al. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal. Immunol. 2015, 8 (3): 627-639.
  49. Wu K., Yao R., Wang H. et al. Mucosal and systemic immunization with a novel attenuated pneumococcal vaccine candidate confer serotype independent protection against Streptococcus pneumoniae in mice. Vaccine. 2014, 16; 32 (33): 4179-4188.
  50. XuX., Meng J., Wang Y. et al. Serotype-independent protection against pneumococcal infections elicited by intranasal immunization with ethanol-killed pneumococcal strain, SPY1. J. Microbiol. 2014, 52 (4): 315-323.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Семенова И.Б., Михайлова Н.А., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах