БЕЛКОВЫЕ КОМПОНЕНТЫ ВРОЖДЕННОГО ИММУНИТЕТА В ЗАЩИТЕ ОТ ПАТОГЕННОЙ ИНВАЗИИ


Цитировать

Полный текст

Аннотация

Система врожденного иммунитета представляет собой набор эффекторных молекул и клеток, противодействующих инвазии патогенов и их продуктов. Альфа-2-макроглобулин (а2-МГ) и лак-тоферрин (ЛФ) играют значительную роль в первичной защите организма. Широкий спектр транспортных и регуляторных функций, высокое сродство к рецептору эндоцитоза, а также структурные особенности данных белков позволяют им не только эффективно защищать организм при непосредственном контакте с патогеном, но и оказывать модулирующее воздействие на иммунокомпе-тентные клетки адаптивного иммунитета. Однако, несмотря на общий рецептор и ряд лигандов, механизмы реализации защитных функций а2-МГ и ЛФ значительно различаются. Цель данного обзора - систематизация знаний о способах и механизмах защиты а2-МГ и ЛФ от патогенной инвазии.

Об авторах

В. Н Зорина

Новокузнецкий государственный институт усовершенствования врачей

Н. А Зорин

Новокузнецкий государственный институт усовершенствования врачей

Список литературы

  1. Зорин Н.А., Зорина В.Н. Роль белков семейства макроглобулинов в механизмах инфицирования. Журн. микробиол. 2004, 3: 105-112
  2. Зорина В.Н. Белки семейства макроглобулинов как компонент врожденного иммунитета и универсальные регуляторы межклеточных взаимодействий в норме и при патологии. Автореф. дис. д-ра биол. наук, М., 2009.
  3. Ярилин А.А. Иммунология. М., ГЭОТАР-медиа, 2010.
  4. Arandjelovic S., Van Sant C.L., Gonias S.L. Limited mutations in full-length tetrameric human alpha2-macroglobulin abrogate binding of platelet-derived growth factor-BB and transforming growth factor-beta1. J. Biol. Chem. 2006, 281 (25): 17061-17068.
  5. Armstrong PB. Proteases and protease inhibitors: a balance of activities in host-pathogen interaction. Immunobiology. 2006, 211 (4): 263-281.
  6. Baker E.N., Baker H.M. Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci. 2005, 62: 2531-2539.
  7. Berlutti F., Pantanella F., Natalizi T et al. Antiviral properties of lactoferrin - a natural immunity molecule. Molecules. 2011, 16(8): 6992-7018.
  8. Birkenmeier G. Targetting the proteinase inhibitor and immune modulatory function of human alpha-2-macroglobulin. Modern. Asp. Immunobiol. 2001, 3: 32-36.
  9. Bowers E.V., Horvath J.J., Bond J.E. et al. Antigen delivery by alpha(2)-macroglobulin enhances the cytotoxic T lymphocyte response. J. Leukoc. Biol. 2009, 86(5): 1259-1268.
  10. Budd A., Blandin S., Levashina E.A., Gibson TJ. Bacterial alpha2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? Genome Biol. 2004, 5 (6): R38.
  11. Burgener A., Rahman S., Ahmad R. et al. Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers. J. Proteome. Res. 2011, 10 (11): 5139-5149.
  12. Carter C.J. APP, APOE, complement receptor 1, clusterin and PICALM and their involvement in the herpes simplex life cycle. Neurosci Lett. 2010, 483 (2): 96-100.
  13. Craig-Barnes H.A., Doumouras B.S., Palaniyar N. Surfactant protein D interacts with alpha2-mac-roglobulin and increases its innateimmune potential. J. Biol. Chem. 2010, 285 (18): 13461-13470.
  14. Cwach K.T., Sandbulte H.R., Klonoski J.M., Huber V.C. Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays. Influenza Other Resp. Viruses. 2012, 6 (2): 127-135.
  15. Di Micco B., Di Micco P., Lepretti M. et al. Hyperproduction of fibrin and inefficacy of antithrombin III and alpha2 macroglobulin in the presence of bacterial porins. Int. J. Exp. Pathol. 2005, 86 (4): 241245.
  16. Dinkla K., Sastalla I., Godehardt A.W. et al. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related alpha2-macroglob-ulin-binding protein GRAB located on the bacterial surface. Microbes Infect. 2007, 9 (8): 922-931.
  17. Doan N., Gettins P.G. Human alpha2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3. Biochem. J. 2007, 407 (1): 23-30.
  18. Doan N., Gettins P.G. alpha-Macroglobulins are present in some gram-negative bacteria: characterization of the alpha2-macroglobulin from Escherichia coli. J. Biol. Chem. 2008, 283 (42): 28747-28756.
  19. Dolmer K., Gettins P.G. Three complement-like repeats compose the complete alpha2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein. J. Biol. Chem. 2006, 281 (45): 34189-34196.
  20. Gonzalez-Gronow M., Selim M.A., Papalas J., Pizzo S.V. GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal. 2009, 11 (9): 2299-2306.
  21. Franke G.C., Bockenholt A., Sugai M. et al. Epidemiology, variable genetic organization and regulation of the EDIN-B toxin in Staphylococcus aureus from bacteraemic patients. Microbiology. 2010, 156 (Pt 3): 860-872.
  22. Franciosa G., Maugliani A., Scalfaro C. et al. Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates. Int. J. Immunopathol. Pharmacol. 2009, 22 (1): 183-193.
  23. French K., Yerbury J.J., Wilson M.R. Protease activation of alpha2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry. 2008, 47 (4): 1176-1185.
  24. Jeng D., Rahman M.M., McFadden G., Essani K. Tumor necrosis factor inhibitors from poxviruses with an emphasis on tanapoxvirus-2L protein. Recent Pat. DNA Gene Seq. 2011, 5 (2): 97-103.
  25. Hart J.P., Gunn M.D., Pizzo S.V. A CD91-positive subset of CD11c+ blood dendritic cells: characterization of the APC that functions to enhance adaptive immune responses against CD91-targeted antigens.J. Immunol. 2004, 172 (1): 70-78.
  26. Huson L.E., Authie E., Boulange A.F. et al. Modulation of the immunogenicity of the Trypanosoma congolense cysteine protease, congopain, through complexation with alpha(2)-macroglobulin. Vet. Res. 2009, 40 (6): 52.
  27. Jones M.N., Holt R.G. Activation of plasminogen by Streptococcus mutans. Biochem. Biophys. Res. Commun. 2004, 322 (1): 37-41.
  28. Kantyka T, Rawlings N.D., Potempa J. Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function. Biochimie. 2010, 92 (11): 1644-1656.
  29. Legrand D., Elass E., Carpenter M., Mazurer J. Lactoferrin: a modulator of immune and inflammatory responses. Cell. Mol. Life Sci. 2005, 62: 2549-2559.
  30. Lerner L., Henriksen M.A., Zhang X., Darnell J.E. Jr. STAT3-dependent enhanceosome assembly and disassembly: synergy with GR for full transcriptional increase of the alpha 2-macroglobulin gene. Genes Dev. 2003, 17 (20): 2564-2577.
  31. Marr S., Goyos A., Gantress J. et al. CD91 up-regulates upon immune stimulation in Xenopus adult but not larval peritoneal leukocytes. Immunogenetics. 2005, 56 (10): 735-742.
  32. Mirza S., Wilson L., Benjamin W.H. Jr. et al. Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin. Infect. Immun. 2011, 79 (6): 2440-2450.
  33. Moriuchi M., Moriuchi H. Induction of lactoferrin gene expression in myeloid or mammary gland cells by human T-cell leukemia virus type 1 (HTLV-1) tax: implications for milk-borne transmission ofHTLV-1. J. Virol. 2006, 80 (14): 7118-7126.
  34. Pan J., Clayton M., Feitelson M.A. Hepatitis B virus X antigen promotes transforming growth factor-beta1 (TGF-beta1) activity by up-regulation of TGF-beta1 and down-regulation of alpha2-macroglob-ulin. J. Gen. Virol. 2004, 85 (Pt 2): 275-282.
  35. Puddu P., Latorre D., Carollo M. et. al. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells. PLoS One. 2011, 6 (7): e22504.
  36. Quinones Q.J., de Ridder G.G., Pizzo S.V. GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol. Histopathol. 2008, 23 (11): 1409-1416.
  37. Scharfstein J. Parasite cysteine proteinase interactions with alpha 2-macroglobulin or kininogens: differential pathways modulating inflammation and innate immunity in infection by pathogenic trypano-somatids. Immunobiology. 2006, 211 (1-2): 117-125.
  38. Smith D.C., Spooner R.A., Watson P.D., et al. Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum. Traffic. 2006, 7 (4): 379-393.
  39. Suzuki Y.A., Lopez V., Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell. Mol. Life Sci. 2005, 62: 2560-2575.
  40. Taha S.H., Mehrez M.A., Sitohy M.Z. et al. Effectiveness of esterified whey proteins fractions against Egyptian Lethal Avian Influenza A (H5N1). Virol. J. 2010, 7: 330.
  41. Valenti P., Antonini G. Lactoferrin: an important host defence against microbal and viral attack. Cell. Mol. Life Sci. 2005, 62: 2576-2587.
  42. Zorina V.N., Zorin N.A., O.F. Lykova O.F. et al. Alpha-2macroglobulin ligands and mechanisms of their biotransport. Biochemistry (Moskow) Supplement Series B. Biomedical Chemistry. 2007, 1 (3): 216219.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Зорина В.Н., Зорин Н.А., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах