СПЕКТРОСКОПИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА В МИКРОБИОЛОГИЧЕСКОЙ ДИАГНОСТИКЕ: ДОСТИЖЕНИЯ, ПРЕИМУЩЕСТВА, ПЕРСПЕКТИВЫ


Цитировать

Полный текст

Аннотация

При всем многообразии существующих методов выявления микроорганизмов остается нерешенным вопрос об ускоренной диагностике возбудителей тяжелых заболеваний, внутрибольничных инфекций и других микробных агентов, имеющих эпидемиологическое значение. В тех случаях, когда необходимо иметь результат исследования в течение кратчайшего срока, необходимы методы, не требующие специальной длительной подготовки исследуемого материала и выделения чистой культуры микроорганизмов. К ним относятся оптико-спектральные методы, среди которых наибольшего внимания заслуживает спектроскопия комбинационного рассеяния света, или рамановская спектроскопия, применению которой посвящен данный обзор. Возможность получения в течение нескольких минут информации о входящих в состав изучаемой пробы компонентах позволяет использовать рамановскую спектроскопию во многих отраслях биологии и медицины. Высокая специфичность метода основана на абсолютной уникальности спектров различных веществ и на практике составляет 96 - 97%, чувствительность - 95%. Полная автоматизация процесса, использование новейшего математического аппарата для считывания и предоставления результатов исследования позволяют избежать влияния человеческого фактора и повышают объективность полученных данных. Аналитическая надежность, своевременность получения результата и экономическая эффективность дают право рассматривать спектрометрию комбинационного рассеяния света в качестве перспективного универсального экспрессного метода в микробиологической диагностике.

Об авторах

А. В Наумик

НИИ эпидемиологии и микробиологии им. Пастера, Санкт-Петербург

Список литературы

  1. Беккер Ю. Спектроскопия. М., Техносфера, 2009.
  2. Еремин С.К., Изотов Б.Н., Веселовская Н.В. Анализ наркотических средств. М., Мысль, 1993.
  3. Жебрун А.Б., Ценева Г.Я., Хамдулаева Г.Н. Бактериологическая безопасность при дифтерии: от классических методов к современным миниатюрным устройствам специального микробиологического контроля. Биотехносфера. 2012, 1 (19): 20-23.
  4. Замалеева А.И. Иммобилизация наноматериалов на поверхности живых клеток эукариот и прокариот. Автореф. дис. канд. биол. наук. Казань, 2010.
  5. Кишкун А.А., Гузовский А.Л. Лабораторные информационные системы и экономические аспекты деятельности лаборатории. М., Лабора, 2007.
  6. Клиническая лабораторная диагностика: национальное руководство. В.В. Долгов, В.В. Меньшиков (ред.). М., ГЭОТАР-Медиа, 2012.
  7. Меньшиков В.В. Исследования вне лаборатории. Средства, технологии, условия применения. М., Агат-Мед, 2008.
  8. Михайлова Д.О., Бобылева З.Д., Базарный В.В. Диагностическое значение различных иммунологических методов лабораторной диагностики легионеллеза. Журн. микро-биол. 2008, 2: 51-53.
  9. Набиев И. Р., Ефремов Р. Г., Чуманов Г.Д. Гигантское комбинационное рассеяние и его применение к изучению биологических молекул. Успехи физических наук. 1988, 154 (3): 459-495.
  10. Шмидт В. Оптическая спектроскопия для химиков и биологов. М., Техносфера, 2007.
  11. Энциклопедия клинических лабораторных тестов. Н.Тица (ред.). М., Лабинформ, 1997.
  12. Alexander T., Le D. Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores. Appl. Opt. 2007, 46 (18): 38783890.
  13. Barhoumi A., Zhang D., Tam F. et al. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 2008, 130 (16): 5523-5529.
  14. Benevides J., Overman S., Thomas G. Raman spectroscopy of proteins. Curr. Protoc. Protein. Sci. 2004, Chapter 17: Unit 17.8.
  15. Choo-Smith L.P., Edwards H.G., Endtz H.P. et al. Medical applications ofRaman spectroscopy: from proof of principle to clinical implementation. Biopolymers. 2002, 67 (1): 1-9.
  16. Chowdary M.V., Kumar K.K., Kurien J. et al. Discrimination ofnormal, benign, and malignant breast tissues by Raman spectroscopy. Biopolymers. 2006, 83: 556-569.
  17. Fenollar F., Roux V., Stein A. Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J. Clin. Microbiol. 2006, 3: 1018-1028.
  18. Gessner R., Rosch P., Kiefer W. et al. Raman spectroscopy investigation ofbiological materials by use of etched and silver coated glass fiber tips. Biopolymers. 2002, 67 (4-5): 327-330.
  19. Grow A., Wood L., Claycomb J. et al. New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods. 2003, 53 (2): 221-233.
  20. Haka A.S., Shafer-Peltier K.E., Fitzmaurice M. et al. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 2005, 102: 12371-12376.
  21. Harrison G.R., Lord R.C. Practical Spectroscopy. New Ybrk, 1948.
  22. Howell S., Haffajee A., Pagonis T. et al. Laser raman spectroscopy as a potential chair-side microbiological diagnostic device. J. Endod. 2011, 37 (7): 968-972.
  23. Ivleva N.P, Wagner M, Horn H.et al. In situ surface-enhanced Raman scattering analysis of biofilm. Anal. Chem. 2008, 80 (22): 8538-8544.
  24. Jaanalves G.T. Luminescense and Ebsorbtion of hybrid хerogels doped with PbS Nanoparticles prepared by gas diffusion method. Materials Science Forum. 2006: 1221-1224.
  25. Kem W., Tu C., Williams R. et al. Circular dichroism and laser Raman spectroscopic analysis of the secondary structure of Cerebratulus lacteus toxin B-IV. J. Protein Chem. 1990, 9 (4): 433-443.
  26. Kim N., Lee S., Moskovits M. Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett. 2010, 10 (10): 4181-4185.
  27. Kinalwa M., Blanch E.W., Doig A.J. Determination ofprotein fold class from Raman or Raman optical activity spectra using random forests. Protein Sci. 2011, 20 (10): 1668-1674.
  28. Li L., Hutter T., Finnemore A.S. et al. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Lett.2012, 12 (8): 4242-4246.
  29. Maquelin K., Choo-Smith L., van Vreeswijk T. et al. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal. Chem. 2000, 72 (1): 12-19.
  30. Matousek P., Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 2007, 12: 024008.
  31. Mengqiu Li, Jian Xu, Maria Romero-Gonzalez.et al. Single cell Raman spectroscopy for cell sorting and imaging. Curr. Opin. in Biotechnol. 2012, 23: 56-63.
  32. Moore B., Stevenson L., Watt A. et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat. Biotechnol. 2004, 22 (9): 1133-1138.
  33. Nikula T. A human Immunochip cDNA microarray provides a comprehensive tool to study immune responses. J. Immunol. Meth. 2005, 1-2: 122-134.
  34. Nolan J., Duggan E., Liu E. et al. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods. 2012, 57 (3): 272-279.
  35. Ochsenktihn M., Borek J., Phelps R. et al. Redox potential dependence of peptide structure studied using surface enhanced Raman spectroscopy. Nano Lett. 2011, 11 (7): 2684-2688.
  36. Qian J., Jiang L., Cai F. et al. Fluorescence-surface enhanced Raman scattering co-functionali-zed gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials. 2011, 32: 1601-1610.
  37. Qiang Tu, Chang Chang. Diagnostic applications of Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine. 2012, 8: 545-558.
  38. Schmit V., Martoglio R., Carron K. Anal. Chem. 2012, 84 (9): 4233-4236.
  39. Sebastian W., Tyler W, Thomas H. Chemical analysis in vivo and in vitro by Raman spectroscopy from single cells to humans. Curr. Opin. Biotechnol. 2009, 20: 63-73.
  40. Smith W. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 2008, 37 (5): 955-964.
  41. Stockel S., Meisel S., Elschner M. et al. Identification of Bacillus anthracis via Raman Spectroscopy and Chemometric Approaches. Anal. Chem. 2012, 84 (22): 9873-9880.
  42. Takamatsu T., Harada I., Hayashi K. Raman spectra of some snake venom components. Biochim. Biophys. Acta. 1980, 622 (2): 189-200.
  43. Thomas G. New structural insights from Raman spectroscopy of proteins and their assemblies. Biopolymers. 2002, 67 (4-5): 214-225
  44. Thomas G. Raman spectroscopy of protein and nucleic acid assemblies. Annu. Rev. Biophys. Biomol. Struct. 1999, 28: 1-27.
  45. Tripathi A., Jabbour R Treado P. et al. Waterborne pathogen detection using Raman spectroscopy Appl. Spectrosc. 2008, 62 (1): 1-9.
  46. Webb-Robertson B., Bailey V., Fansler S. et al. Spectral signatures for the classification of microbial species using Raman spectra. Anal. Bioanal. Chem. 2012, 404 (2): 563-572.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Наумик А.В., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах