КИШЕЧНЫЕ ИНФЕКЦИИ, ВОСПАЛЕНИЕ И АУТОИММУНИТЕТ. ПУСКОВЫЕ И ЭФФЕКТОРНЫЕ МЕХАНИЗМЫ РАЗВИТИЯ АУТОИММУННЫХ ЗАБОЛЕВАНИЙ КАК ИСХОДА КИШЕЧНЫХ ИНФЕКЦИЙ


Цитировать

Полный текст

Аннотация

Проблема взаимосвязи кишечных инфекций, воспалительных заболеваний кишечника и аутоиммунных болезней в данной статье рассматривается с позиций их пусковых и эффекторных механизмов. Среди пусковых механизмов особое внимание уделяется механизмам, с помощью которых наличие патогенного микробного возбудителя в организме трансформируется в аутоиммунный процесс. Основной акцент делается на явлении антигенной мимикрии, носительстве патогенными агентами суперантигенов, роли клеточного апоптоза. Аутоиммунные заболевания рассматриваются также как генетически обусловленный феномен с указанием основных генов, полиморфизм которых причастен к развитию данной патологии. Среди эффекторных реакций, сопутствующих развитию аутоиммунного процесса на фоне кишечных инфекций, более детально анализируется роль В1лимфоцитов, Th17 и Th1. Особое внимание уделяется патогенетической и про-тективной роли естественных киллеров, которая признается относительно малоизученной.

Об авторах

И. П Балмасова

Российский университет дружбы народов, Москва

Р. И Сепиашвили

Российский университет дружбы народов, Москва

Список литературы

  1. Abraham C., Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm. Bowel Dis. 2009, 15: 1090-1100.
  2. Abraham C., Cho J.H. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 2009, 60: 97-110.
  3. Biron C.A., Nguyen K.B., Pien G.C. et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 1999, 17: 189-220.
  4. Christen U., von Herrath M.G. Infections and autoimmunity - Good or bad? J. Immunol. 2005, 174: 7481-7486.
  5. Cohavy O., Bruckner D., Gordon LK. et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect. Immun. 2000, 68: 1542-1548.
  6. Ebringer A., Rashid T. B27 disease is a new autoimmune disease that affects millions of people. Ann. N. Y. Acad. Sci. 2007, 1110: 112-120.
  7. Fairweather D., Kaya Z., Shellam G.R. et al. From infection to autoimmunity. J. Autoimmun. 2001, 16: 175-186.
  8. Ferlazzo G., Thomas D., Lin S.L. et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004, 172: 1455-1462.
  9. Flodstrom M., Maday A., Balakrishna D. et al. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol. 2002, 3: 373-382.
  10. French A.R., Yakoyama W.M. Natural killer cells and viral infections. Curr. Opin. Immunol. 2003, 15: 45-51.
  11. French A.R., Yokoyama W.M. Natural killer cells and autoimmunity. Arthritis Res. Ther. 2004, 6: 8-14.
  12. Fujinami R.S., Oldstone M.B Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985, 230: 10431045.
  13. Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, Bystander activation, or viral persistence: Infections and autoimmune disease. Clin. Microbiol. Rev. 2006, 19: 80-94.
  14. Goronzy J.J., Weyand C.M. T-cell co-stimulatory pathways in autoimmunity. Arthritis Res. Ther. 2008, 10: 3.
  15. Ivanov I.I., McKenzie B.S., Zhou L. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17(+) T helper cells. Nat. Neurosci. 2005, 8: 752-758.
  16. Jacobs R., Hintzen G., Kemper A. et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur. J. Immunol. 2001, 31: 3121-3127.
  17. Kannan S. Free radical theory of autoimmunity. Theor. Biol. Med. Model. 2006, 3: 22-41.
  18. Kovvali G., Das K.M. Molecular mimicry may contribute to pathogenesis ofulcerative colitis. FEBS Lett. 2005, 579: 2261-2266.
  19. Kurylowicz A., Nauman J. The role of nuclear factor-kappaB in the development of autoimmune diseases: a link between genes and environment. Acta Biochem. Pol. 2008, 55: 629647.
  20. Lanier L.L. NK cell recognition. Annu. Rev. Immunol. 2005, 23: 225-274.
  21. Laukens D., Peeters H., Marichal D. et al. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann. Rheum. Dis. 2005, 64: 930-935.
  22. Leskovek N.V., Mackay I.R., Rose N.R. Cell damage and autoimmunity: a critical appraisal. J. Autoimmun. 2008, 30: 5-11.
  23. Lindgren A., Yun C.H., Lundgren A. et al. CD8-natural killer cells are greatly enriched in the human gastrointestinal tract and have the capacity to respond to bacteria. J. Innate Immun. 2010, 2: 294-302.
  24. Liu Z.-J., Yadav P.K., Su J.-L. et al. Potential role of Th17 cells in the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 2009, 15: 5784-5788.
  25. Lu L., Ikizawa K., Hu D. et al. Regulation of activated CD4+ T cells by NK cells via the Qa-1-NKG2A inhibitory pathway. Immunity. 2007, 26: 593-604.
  26. Ltinemann A., Ltinemann J.D., Mtinz C. Regulatory NK-cell functions in inflammation and Autoimmunity. Mol. Med. 2009, 15: 352-358.
  27. Martin F., Oliver A.M., Kearney J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001, 14: 617-629.
  28. Matsumoto I., Maccioni M., Lee D.M. et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat. Immunol. 2002, 3: 360-365.
  29. Matzinger P. An innate sense of danger. Ann. N. Y Acad. Sci. 2002, 961: 341-342.
  30. Medzhitov R., Janeway C.A. Decoding the patterns of self and nonself by the innate immune system. Science. 2002, 296: 298-300.
  31. Milner E.C.B., Anolik J., Cappione A. et al. Human innate B cells: a link between host defense and autoimmunity? Springer Semin. Immunopathol. 2005, 26: 433-452.
  32. Moretta A., Bottino C., Vitale M. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 2001, 19: 197-223.
  33. Moretta A., Marcenaro E., Parolini S. et al. NK cells at the interface between innate and adaptive immunity. Cell Death Differ. 2008. 15: 226-233.
  34. Mowat A.M., Bain C.C. Mucosal macrophages in intestinal homeostasis and inflammation. J. Innate Immun. 2011, 3: 550-564.
  35. Munz С., Ltinemann J.D., Getts M.T. et al. Antiviral immune responses: triggers ofor triggered by autoimmunity? Nat. Rev. Immunol. 2009, 9: 246-258.
  36. Nielsen N., Odum N., Urso B. et al. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS One. 2012, 7: e31959.
  37. Oldstone M.B. Molecular mimicry and immune-mediated diseases. Faseb J. 1998, 12: 12551265.
  38. Orlando A., Renna S., Perricone G. et al. Gastrointestinal lesions associated with spondyloarthropathies. World J. Gastroenterol. 2009, 15: 2443-2448.
  39. Paton A.W., Jennings M.P., Morona R. et al. Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology. 2005, 128: 12191228.
  40. Poirot L., Benoist C., Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl. Acad. Sci. USA. 2004, 101: 8102-8107.
  41. Reynders A., Yfessaad N., Vu Manh T.P. et al. Identity, regulation and in vivo function of gut NKp46+RORyt+ and NKp46+RORyt- lymphoid cells. EMBO J. 2011, 30: 2934-2947.
  42. Rodriguez-Reyna T.S., Martinez-Reyes C., Yamamoto-Furusho J.K. Rheumatic manifestations of inflammatory bowel disease. World J. Gastroenterol. 2009, 15: 5517-5524.
  43. Sabayan B., Foroughinia F., Imanieh M.H. Can Campylobacter jejuni play a role in development of celiac disease? A hypothesis. World J. Gastroenterol. 2007, 13: 4784-4785.
  44. Sprenkels S.H, Van Kregten E., Feltkamp T.E. IgA antibodies against Klebsiella and other Gram-negative bacteria in ankylosing spondylitis and acute anterior uveitis. Clin. Rheumatol. 1996, 15: 48-51.
  45. Stranges P.B., Watson J., Cooper C.J. et al. Fas-mediated elimination of antigen-presenting cells and autoreactive T cells contribute to prevention of autoimmunity. Immunity. 2007, 26: 629-641.
  46. Strowig T., Brilot F., Mtinz C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J. Immunol. 2008, 180: 7785-7791.
  47. Tlaskalova-Hogenova H., Stepankova R., Tuckova L. et al. Autoimmunity, immunodeficiency and mucosal infections: chronic intestinal inflammation as a sensitive indicator of immunoregulatory defects in response to normal luminal microflora. Folia Microbiol. (Praha). 1998, 43: 545-550.
  48. Vignal C., Singer E., Peyrin-Biroulet L. et al. How NOD2 mutations predispose to Crohn’s disease? Microbes Infect. 2007, 9: 658-663.
  49. Wenzel B. E., Heesemann J., Heufelder A. et al. Enteropathogenic Yersinia enterocolitica and organ-specific autoimmune diseases in man. In: Une Т., Maruyama Т., Tsubokura M. (ed.). Current investigation of the microbiology of Y^rsiniae. Basel: Karger. 1991, p. 80-88.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Балмасова И.П., Сепиашвили Р.И., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах