VIBRIO CHOLERAE CHITINOLYTIC COMPLEX: THE COMPOSITION AND THE ROLE IN PERSISTANCE

Cover Page


Cite item

Full Text

Abstract

Reviewed the paper are the composition and functions of Vibrio cholerae chitinolytic complex which play an important role in the maintaining and creating new forms of vibrios in the environment, it is better adapted to survive in environmental.

About the authors

O. V. Duvanova

Research Institute of Plague Control

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

B. N. Mishankin

Research Institute of Plague Control

Email: noemail@neicon.ru
Russian Federation

L. V. Romanova

Research Institute of Plague Control

Email: noemail@neicon.ru
Russian Federation

S. V. Titova

Research Institute of Plague Control

Email: noemail@neicon.ru
Russian Federation

References

  1. Дуванова О.В., Мишанькин Б.Н., Водопьянов А.С., Сорокин В.М. N-ацетил-β-D-глюкозаминидаза холерных вибрионов. Журн. микробиол. 2016, 2: 41-48.
  2. Дуванова О.В., Мишанькин Б.Н., Сорокин В.М., Титова С.В.Оценка влияния температуры культивирования на активность N-ацетил-β-D-глюкозаминидазы у холерных вибрионов. ЗНиСО, 2016, 4 (277): 42-44.
  3. Журавлева Н.В., Лукьянов П.А. Хитинолитические ферменты: источники, характеристика и применение в биотехнологии. Вестник ДВО РАН. 2004, 3: 76-86.
  4. Ильина А.В., Варламов В.П., Тихонов В.Е., Ямсков И.А., Даванков В.А. Выделение высокоочищенной хитиназы Streptomyces kurssanovii на модифицированном хитине. Биотехнология.1992,2: 25-28.
  5. Малеев В.В., Особо опасные микозы. Волгоград, Волга-Паблишер, 2013.
  6. Мишанькин Б.Н., Романова Л.В., Ломов Ю.М., Шиманюк Н. Я., Водопьянов С.О., Черепахина И.Я., Сучков И.Ю., Дуванова О.В. Vibrio cholera 0139, выделенные от людей и из воды открытых водоемов. Журн. микробиол. 2000, 3: 3-7.
  7. Мишанькин Б.Н., Шиманюк Н.Я., Водопьянов С.О., Романова Л.В., Водопьянов А.С., Дуванова О.В., Атарова Г.Т., Демьяненко С.В. Изучение хитинолитического комплекса холерного вибриона сероварианта 0139. Биотехнология. 2010, 1: 32-40.
  8. Скрябин К.Г. Хитин и хитозан. Получение, свойства и применение. Москва, Наука, 2002.
  9. Стояченко И.А., Варламов В.П. Очистка и некоторые свойства хитиназ из Streptomyces kurssanovii. Биотехнология. 1992, 2: 29-36.
  10. Amako К., Shimodori S., Imoto T. et al. Effects of chitin and its soluble derivatives on survival of Vibrio cholerae Ol at low temperature. Appl. Environm. Microbiol. 1987, 3 (53), 603-605.
  11. Appleby L.J., Nausch N., Bourke C.D. Chitinase 3-like 1 protein levels are elevated in Schistosoma haematobium infected children. PLoS Negl. Trop. Dis. 2012, 11 (6): e. 1898, doi: 10.1371.
  12. Bassler B.L., Gibbons P.J., Yu C. et al. Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio fumissii. J. Biol. Chem.1991. 36 (266): 24268-24275.
  13. Bohr S., Petel S.J., Vasko R. et al. The role CHI3L1 (Chitinase 3-like-1) in the pathogenesis of infections in burns in a mouse model. PloS One. 2015, 11 (10): e.0140440. doi: 10137.
  14. Colwell R. Global climate and infectious diseases: the cholera paradigm. Science. 1996, 274: 2025-2031.
  15. Davis B., Eveleigh D. Chitosanases: occurrence, production and immobilization. Chitin, chitosan and related enzymes. Ed. Zikakis J.P. Orlando. Academic Press, 1984, p. 161-179.
  16. Dela Cruz C.S., Lu W., He C.H. et al. Chitinase 3-like-l promotes Streptococcus pneumoniae killing and augments host tolerance to lung antibacterial responses. Cell Host Microbe. 2012, 1:34-46.
  17. Di Rosa M., Distefano G., Zorena K. Chitinases and immunity: ancestral molecules with new functions. Immunobioology. 2016, 3 (221): 399-411.
  18. Hunt D. E., Gevers D., Vahora N. M. et al. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl. Environ. Microbiol. 2008, 1 (74): 44-51.
  19. Kaneko T., Colwell R.R. Adsorption of Vibrio parahaemolyticus onto chitin and zooplank-tonic copepods. Appl. Microbiol. 1975, 29: 251-257.
  20. Kaplan J.B., Ragunath C., Velliyagounder K. et al. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemotherap. 2004, 7 (48): 2633-2636.
  21. Keyhani N. O., Roseman S. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta. 1999, 1473: 108-122.
  22. Keyhani N. O., Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio fumissii. Molecular cloning, isolation and characterization of the periplasmic chitodextrinase. J. Biol. Chem. 1996, 52 (271): 33414-33424.
  23. Kobayashi T, Koide O., Deguchi S. et al. Characterization of chitosanase of a deep biosphere Bacillus strain. Biosci. Biotechnol. Biochem. 2011, 4 (75), 669-673.
  24. Li X., Roseman S., Morita K., Fukumoto I. et al. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and two-component chitin catabolic sensor/kinase. Proc.Natl. Acad. Sci. USA. 2004, 2 (101): 627-631.
  25. Lipp E. K., Huq A., Colwell R. R. Effect ofglobal climate on infectious diseases: the cholera model. Clin. Microbiol. Rev. 2002, 15: 757-770.
  26. Lo Scrudato M., Blokesch M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 2012, 6: el002778.
  27. Low D., Subramaniam R., Aomatsu T. et al. Chitinase 3-like-l induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget. 2015, 34 (6): 3635-3650.
  28. Low D., Tran H.T., DreuxN. et al. Chitin-binding domains of Escherichia coli ChiA mediate interactions with intestinal epithelial cells in mice with colits. Gastroenterology. 2013, 3 (145): 602-612.
  29. Ma B., Herzog E.L., Lee C.G. et al. Role of chitinase 3-like-l and semaphoring 7a in pulmonary melanoma metastasis. Cancer Res. 2015, 3 (75): 487-496.
  30. Meibom K. L., Li X. B., Nielsen A. T. et al. The Vibrio cholerae chitin utilization program. Proc. Soc. Acad. Sci. USA. 2004, 8 (101): 2524-2529.
  31. Moiler H. Grelier S., Pardon P. et al. Antimicrobial and physicochemical properties ofchitosan - HPMC - based films. J. Agric. Food Chem. 2004, 52: 6585-6591.
  32. Nalin D. R., Daya V, Reid A. Adsorption and growth of Vibrio cholerae on chitin. Infect. Immun. 1979, 2 (25): 768-770.
  33. Park J. K., Yamasaki Y., Nakagawa T. et al. Purification and characterization of the chitinase (ChiA) from Enterobacter sp. G-l. Biosci. Biotechnol. Biochem. 1997, 61: 684-689.
  34. Patil S. R., Ghormade V, Deshpande M. V Chitinolytic enzymes: an exploration. Enzyme Microb. Technol. 2000, 26: 473-483.
  35. Rabea E. J., Badawy M., StevensC. V. et al. Chitosan as antimicrobial agents: Application and mode action. Biomacromolecules 2003, 6 (4): 1457-1465.
  36. Reguera G., Kolter R. Virulence and environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J. Bacteriol. 2005, 10 (187): 3551-3555.
  37. Reimann L., Azam F. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications. App. Environ. Microbiol. 2002, 68: 5554-5562.
  38. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31: 603-632.
  39. Sahai A.S., Manocha M.S. Chitinases of fungi and plants: their involvement in morphogenesis and host parasite interaction. FEMS Microbiol. Rev. 1993, 11: 317-338.
  40. Sikora A.E. Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches. PLoS pathogens. 2013, 2 (9): e 1003126. doi: 10.137.
  41. Sun S., Tay S., Kjelleberg S.A. et al. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofdms. IS ME J. 2015, 9 (8): 1812-1820.
  42. Taira T., Ohnuma T, Yamagami T. et al. Antifungal activity of rye (Secale cereale) seed chiti-nases: the different binding manner of class I and class II chitinases to the fungal cell wall. Biosci. Biotechnol. Biochem. 2002, 66: 970-977.
  43. Tamayo R., Patimalla B., Camilli A. Growth in biofilm induces a hyperinfections phenotype in Vibrio cholerae. Infect. Immun. 2010, 78 (8): 3560-3569.
  44. Tarsi R., Pruzzo C. Role of surface proteins in Vibrio cholerae attachment to chitin. Appl. Env. Microbiol. 1999, 3 (66): 1348-1351.
  45. Tran H.T., Bamich N., Mizoguchi E. Potential role of chitinase and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. Elistol Histopathol. 2011, 11 (26): 1453-1464.
  46. Varnum S. M., Webb-Robertson B. J., Moore R.J. et al. Proteomic analysis of broncoalveolar lavage fluid proteins from mice infected with Francisella tularensis ssp.novicida. J.Proteome Res. 2012, 7 (11): 3690-3703.
  47. Watve S. S., Thomas J., Hammer В. K. CytR is global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS One. 2015,10 (9): eO 138834.eCollection 2015.
  48. Yamamoto S., Izumiya H., Mitobe J. et al. Identification of a chitin-induced small RNAthat regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J. Bacteriol. 2011, 8 (193): 1953-1965.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Duvanova O.V., Mishankin B.N., Romanova L.V., Titova S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies