Роль микробиоты в регуляции гомеостаза организма человека при инфекции

Обложка


Цитировать

Полный текст

Аннотация

В обзоре рассмотрены регуляторные возможности микробиоты человека для сохранения его здоровья. Проблема не нова, но она расширилась с включением новых «находок» со времен И.И. Мечникова — убежденного сторонника полезной (защитной) функции нормофлоры.

Изучение интеграции метаболизма человека и населяющих его микробов выявило участие микробных метаболитов — сигнальных молекул — в обеспечении гомеостаза хозяина. Особое внимание уделяется продуктам метаболизма — ароматическим аминокислотам как регуляторам физиологических функций человека и микробов. Сигнальные молекулы регулируют микробный «кворум», иммунную систему (ее клеточные и гуморальные звенья). Не обойдены вниманием опиаты, гормональные пептиды, в частности, натрийуретический гормон, гипоталамические нонапептиды (окситоцин и вазопрессин), оказывающие как прямое антимикробное, так и опосредованное действие в организме хозяина.

Интерес исследователи проявляют и к продуктам жировой ткани — адипокинам, в частности, лептину, который оказался многоцелевым регулятором, проявляя при этом провоспалительный характер.

К разряду сигнальных молекул отнесены и цитокины, взаимодействующие с грампозитивными бактериями, что активно обсуждается в литературе.

При оценке представленного материала на различных моделях инфекций просматривается общая зако-номерность: в условиях симбиоза формируется единая регуляторная среда, в которой отмечается много-образие связей от непосредственных (прямых) взаимодействий (разрушение сигнальных молекул, индукция физиологических функций за счет наличия сходных рецепторов к лигандам и, наконец, модификация сигнальных молекул — расширение спектра действия) до косвенных воздействий, опосредованных активацией и регуляцией системы иммунитета через цитокиновую сеть и систему адипокинов. Вероятно, сочетание этого многообразия механизмов интеграции в единой регуляторной среде (микроорганизм-хозяин) и приводит к формированию гомеостаза, те. динамическому равновесию сигнальных систем микробиоты и человека в условиях ассоциативного симбиоза, где инфекция — его модельная система.

В эту концепцию хорошо вписывается разработанный нами метод межмикробного распознавания «свойчужой» в паре доминант-ассоциант и описанный треугольник: микробиота-гипоталамо-гипофизарная нейросекреция-окситоцин, органично составляющий «кишечно-мозговую ось».

Полный текст

Взаимодействия «паразит–хозяин» микробов и человека весьма разнообразны и нередко нарушают гомеостаз хозяина, т.е. стабильное внутреннее равновесие функционирующих систем организма. С другой стороны, имеется немало примеров, когда микробные клетки оказываются полезны для сохранения здоровья человека. Однако в этом «союзе, неотделимом от вражды», который длится уже много веков, есть свой «микробный орган» — микробиом, которым Природа наделила человека, защищая все его биотопы. Как же это осуществляется и что в «копилке» исследователей?

Метаболическая интеграция и сигнальные молекулы

Обилие разнообразных сигнальных молекул и метаболитов в кишечнике позволяет микробиоте осуществлять влияние на состояние организма хозяина, формирование его гомеостаза и управление поведением. Регуляторные метаболиты микроорганизмов включают короткоцепочечные жирные кислоты, гамма-аминомасляную кислоту, биотин, витамин К, путресцин, спермидин, спермин, таурин, кадаверин, триптофан и др. [1][2][3][4].

Была обоснована интеграция метаболизма человека и его микробиоты на основе обобщения результатов исследований с участием микробных метаболитов в развитии критических состояний [5], где было показано, что в сложившейся системе человек–микробиом присутствуют все необходимые объективные условия для формирования метаболической интеграции. Особого внимания заслуживает группа микробных экзометаболитов, имеющих ароматическое строение. Их анализ выявил около 50 ароматических соединений в кишечнике здорового человека, в количественном отношении преобладали такие метаболиты, как фенилуксусная кислота, гидроксифенилуксусная кислота, фенилпировиноградная кислота и др. В сыворотке крови здоровых людей обнаружено присутствие большинства этих ароматических аминокислот с преобладанием гидроксифенилуксусной кислоты. Изменение соотношения ароматических аминокислот в крови авторы связывают с их избирательной утилизацией клетками тканевых барьеров, хотя это не исключает потребности в метаболитах кишечной доминантной микрофлоры.

Имеются данные, подтверждающие роль опиатов в инфекционном процессе [6][7]. Экспериментальные материалы показывают, что при стрессе у лабораторных животных появляются опиаты в просвете кишечника, что сопровождается активацией вирулентности кишечной палочки и нарушением барьерной функции кишечного эпителия [8]. Оказалось, что динорфин — представитель группы опиатов, не увеличивает ростовые свойства, но усиливает продукцию пиоцианина у псевдомонад. А это является еще одним доказательством влияния эукариотических «сигнальных молекул» на физиологию прокариот без изменения их роста/размножения [9].

В ряде работ также описано снижение вирулентности микроорганизмов под действием сигнальных молекул иммунной системы, посредством нарушения микробного кворума, как это было показано на примере динорфина и интерферона (INF)-γ [8][9][10]. В работе M.W. Bader и соавт. [11] представлены данные о влиянии пептидных гормонов, имеющих структурную гомологию к антибактериальным пептидам, на микроорганизмы. Предполагается, что эти молекулы обладают вторичной антимикробной активностью, помимо их мишень-специфического взаимодействия с клетками эукариот.

Натрийуретические пептиды в настоящее время также рассматриваются как пептиды с антимикробным действием, которые могут оказывать влияние на микробиоту при инфекционном процессе [10]. В пользу этого свидетельствуют данные о формировании пор в мембране бактерий под действием С-типа натрийуретического пептида и увеличение концентрации мозгового натрийуретического пептида при септическом шоке. В ряде работ установлено, что натрийуретические гормоны типа В и С стимулируют вирулентные свойства псевдомонад, не влияя на их ростовые характеристики, но изменяя внутриклеточную концентрацию цАМФ. Считается, что механизм данного действия натрийуретических гормонов опосредован белком Vfr, связывающим цАМФ и контролирующим выработку различных факторов вирулентности у Pseudomonas aeruginosa. Исследования штаммов псевдомонад показали наличие рецепторов к разным подтипам натрийуретических гормонов, действующих как через цАМФ, так и через цГМФ [12][13][14].

Гипоталамические нонапептиды

Всеобщий исследовательский интерес к окситоцину и вазопрессину не случаен. Являясь продуктом гипоталамо-гипофизарной нейросекреторной системы (ГГНС) головного мозга, его супраоптического и паравентрикулярного ядер, окситоцин, как и вазопрессин, обладает широтой физиологических действий и принимает непосредственное участие в регуляции адаптационных реакций организма человека [15]. Особенно наглядно это выявляется при инфекции, когда окситоцин защищает хозяина от возбудителя. Ранее считали, что препарат не оказывает защитный эффект непосредственно, хотя и была обнаружена его способность усиливать антимикробное действие антибиотиков, применяемых в комбинации с окситоцином [16].

Так в чем же секрет защитного эффекта при инфекционной патологии? Что он делает с возбудителем инфекции? Для этого вернемся к ранним работам по регуляции персистентного потенциала бактерий О.Л. Черновой (1989) [17], которая, изучая влияние различных антисептических фармакологических средств на антилизоцимную активность золотистого и эпидермального стафилококков, показала, что лидером в десятке изученных антисептиков — препаратов, подавляющих антилизоцимную активность бактерий, — оказался окситоцин, что позволило обратить внимание на ингибирование этого персистентного признака микроорганизмов. В последующем Д.А. Кириллов (2004) [18] методом клонального анализа популяций различных возбудителей инфекции показал, что окситоцин перестраивает персистентный потенциал клонов популяции возбудителя вплоть до его элиминации из организма хозяина.

Эти работы «проторили дорожку» в XXI в. — век инфектологии (от микробиологии и иммунологии), изучающей взаимоотношения паразит–хозяин при инфекции на основе симбиотической платформы и клонального анализа персистентного потенциала популяции возбудителя. Таким образом, клональная перестройка популяции возбудителя болезни, снижающая его адаптационные возможности, — это существенный механизм защиты хозяина, реализуемый при помощи окситоцина.

Не исключено, что данный механизм защиты хозяина от инфекций — еще одна иллюстрация из разряда «природоподобных технологий», которые нам еще предстоит освоить. Но это дело времени и смелости ума. А основания для этого есть.

Посильную лепту в изучение защитного эффекта окситоцина внесли и иммунологи, описавшие другие механизмы опосредованного защитного действия окситоцина при инфекции: фагоцитарную функцию макрофагов, усиление бластной трансформации лимфоцитов, ингибирование биопленкообразования патогенов [19].

Обсуждая эту проблему, нельзя не упомянуть инсулиноподобный эффект окситоцина, базирующийся на усилении синтеза гликогена из глюкозы.  Хирурги хорошо пользуются этим приемом, применяя окситоцин на фоне сахарного диабета пациентов при гнойно-некротических поражениях стоп и гнойно-воспалительных заболеваниях мягких тканей [19][20][21].

Универсальные регуляторные эффекты нонапептидов нашли свое применение и при панкреонекрозе, деструктивном панкреатите и системных поражениях поджелудочной железы [22][23].

Исследователи не теряют интереса к фундаментальным проблемам медицины. Это в полной мере относится к проблеме гомеостаза организма. Как и чем мы можем помочь пациенту?

Лучшее свидетельство тому — исследование, выполненное в «школе» академика Ю.В. Наточина, где был выявлен новый механизм работы многоцелевого регулятора гомеостаза — окситоцина, определивший новую функциональную роль нонапептида — его участие в осморегуляции организма. При изучении регуляции водовыделительной функции почек отмечено, что после водной нагрузки при гипергидратации у крыс возрастала секреция окситоцина ГГНС, что способствовало усилению водного диуреза и приводило к более быстрому выделению воды почкой и восстановлению осмотического гомеостаза [24].

Адипокины и цитокины

Многочисленные исследования механизмов взаимосвязи метаболических нарушений и воспалительных процессов привели к признанию факта, что жировая ткань функционирует как эндокринный орган, выделяя различные биологически активные вещества (адипокины). Изучение адипокинов показало, что дисбаланс данных про- и противовоспалительных медиаторов приводит к различным метаболическим дисфункциям, что свидетельствует о роли адипокинов в формировании гомеостаза хозяина [25]. Принимая во внимание участие адипокинов в воспалении, эти пептиды были разделены на провоспалительные (лептин, резистин, интерлейкин (IL)-6, фактор некроза опухоли (TNF)-α) и противовоспалительные (адипонектин, антагонист рецептора IL-1, IL-10) [26].

Лептин обладает множественным действием и влияет на гипоталамус, осуществляя гормональную регуляцию, связанную с поступлением питательных веществ и энергетическим метаболизмом, а также влияет на метаболизм глюкозы, липидов и другие функции человека [27]. Одной из важных функций лептина является регуляция иммунного ответа, что предполагает роль данных пептидов в интегративных механизмах ассоциативного симбиоза человека и микроорганизмов.

В настоящее время этот вопрос активно изучается. Еще не выяснена защитная роль адипокинов при инфекции толстого кишечника с участием лептина, индуцирующего продукцию муцина за счет стимуляции эпителиальных клеток ободочной кишки и таким образом обеспечивающего статический внешний барьер против патогенов. Однако при этом бактериальная инвазия Salmonella typhimurium, наличие эндотоксина сальмонелл или кишечной палочки не влияли на уровень лептина в крови. Напротив, введение токсина Clostridioides difficile лабораторным животным вызывало значительное повышение уровня лептина в плазме крови и усиливало экспрессию рецепторов к лептину на клетках слизистого эпителия, что предполагает прямой провоспалительный эффект лептина в кишечнике [28][29].

Известно, что диарея, возникающая при бактериальной кишечной инфекции, связана с воздействием микробных липополисахаридов на иммунную систему и нарушением моторики желудочно-кишечного тракта. В экспериментах in vivo выявлено, что у мышей, получавших грелин, нарушение моторики, вызванное присутствием эндотоксина в крови, корректировалось за счет ингибирования уровня оксида азота в желудочно-кишечном тракте и уменьшения продукции провоспалительных цитокинов IL-1β и TNF-α, а также за счет индукции противовоспалительного цитокина IL-10 [30, 31].

Интеграция микробиоты с организмом хозяина может осуществляться при помощи сигнальных молекул иммунной системы человека — цитокинов, баланс которых является одним из условий формирования гомеостаза человека, поскольку цитокины принимают непосредственное участие в регуляции иммунного ответа при инфекции [32]. При этом изменение цитокинового баланса происходит не только за счет взаимодействия микробиоты с клетками иммунитета, но и при непосредственном влиянии бактерий на цитокины (антипептидная активность). Также известно влияние самих цитокинов на биологические свойства микроорганизмов. В экспериментах in vitro показана стимуляция ростовых свойств бактерий под действием IL-1, IL-2, IL-6, INF-γ, TNF-α. У культуры Yersinia pestis обнаружены мембранные рецепторы (антиген сборки капсулы F1), связывающие IL-1β, а у Р. aeruginosa — белок, специфически связывающийся с INF-γ, что приводило к активации механизмов «quorum sensing» [33][34][35][36][37].

Получены данные о ферментах бактерий, расщепляющих многие виды органических макромолекул, включая цитокины IL-2, INF-γ [38], которые могут свидетельствовать о том, что инактивация цитокинов, являющихся продуктом иммунных клеток (лимфоцитов, макрофагов и др.), может привести к нарушениям механизмов как врожденного, так и адаптивного иммунитета. Подтверждением модификации цитокинов и их рецепторов служат материалы, свидетельствующие, что ауреолизин золотистого стафилококка, являющийся металлопротеазой, может вызвать деградацию рецепторов к IL-6 на клетках, цистеиновая протеаза Streptococcus pyogenes разрушает IL-1β, а сериновая протеаза — IL-8. Кроме того, цистеиновая протеаза Porphyromonas gingivalis может вызвать деградацию целой группы цитокинов, включая IL-8, -1β, -6, -12, INF-γ, TNF-α, а металлопротеаза Р. aeruginosa способна разрушать IL-2, IL-6 [39][40].

Таким образом, полученные «находки» иллюстрируют способность микробиоты не только влиять на продукцию цитокинов иммунными клетками, но и использовать определенные цитокины в качестве ростовых факторов и медиаторов «чувства кворума», а также проявлять антипептидную активность, внося свой вклад в формирование цитокинового баланса в организме человека.

Несомненно, что взаимодействие микробных сигнальных метаболитов и иммунной системы человека представляет интерес с позиции интеграции молекулярных систем про- и эукариот при ассоциативном симбиозе человека. В ряде работ показано, что различные гомологи ацилгомосерин-лактонов (АГЛ) ускоряют апоптоз макрофагов и нейтрофилов, ингибируют пролиферацию лимфоцитов и выработку TNF-α и IL-12, тормозят Т-клеточный ответ, индуцируют апоптоз в дендритных клетках и CD4+ Т-лимфоцитах. Роль АГЛ подтверждается наличием механизмов, ограничивающих количество сигнальных молекул в среде, что названо «тушением кворума». Снижение концентрации АГЛ контролируется со стороны как микробиоты, так и хозяина. К примеру, бациллы в ответ на увеличение количества АГЛ продуцируют фермент, инактивирующий широкий спектр АГЛ путем расщепления лактонового кольца. Клетки дыхательного эпителия млекопитающих также производят АГЛ-инактивирующие ферменты (параоксоназы), деградирующие АГЛ синегнойной палочки. В другой работе показано существование трех семейств параоксоназ, которые у млекопитающих расположены преимущественно в печени и могут инактивировать разнообразные АГЛ [41][42][43][44][45][46].

При изучении механизмов интеграции микробиоты и хозяина интерес также представляют сигнальные молекулы микроорганизмов. Их влияние на иммунитет человека было показано на примере гомологов алкилоксибензолов, когда под влиянием метилрезорцина изменялись функциональная активность и субстратная специфичность лизоцима [47].

Очевидно, что в механизмах интеграции микробиоты и человека задействованы сигнальные молекулы: со стороны микробиоты — низкомолекулярные метаболиты, молекулы «quorum sensing» и пр., а со стороны хозяина — гормоны и медиаторы иммунитета. По-видимому, в условиях симбиотических взаимоотношений микробиота–хозяин формируется единая регуляторная среда, в которой наблюдается многообразие создающихся связей: от непосредственных (прямых) взаимодействий — разрушения сигнальных молекул (инактивации молекул кворума, разрушения антимикробных факторов иммунитета), индукции физиологических функций за счет наличия схожих рецепторов к лигандам и, наконец, модификации сигнальных молекул (расширения спектра имеющихся антимикробных ферментов, появления антимикробной активности у пептидов, ранее не имевших данного свойства) — до косвенных воздействий, опосредованных активацией и регуляцией системы иммунитета через цитокиновую сеть и систему адипокинов. По-видимому, сочетание этого многообразия механизмов интеграции в единой регуляторной среде приводит к формированию гомеостаза, означающего динамическое равновесие сигнальных систем микробиоты и человека в условиях ассоциативного симбиоза [46].

Бифидофлора кишечного биотопа — «форпост» здоровья человека

Роль микробного «органа» (микробиома) трудно переоценить, и уж если он создан Природой и сосуществует с хозяином много веков, то остается лишь понять его физиологическое назначение. Наличие в организме млекопитающих универсального и древнего «центра управления» — гипоталамо-гипофизарной системы, продуцирующей нонапептидные нейросекреторные гормоны (вазопрессин и окситоцин), предполагает, что они не могут остаться без работы [48][49].

Оказалось, что кишечная микрофлора, стимулируя иммунную защиту хозяина, защищает организм от раневой инфекции. С одной стороны, эта защита может осуществляться за счет транслокации полезной микрофлоры хозяина, как это было показано на примере бацилл [50]. С другой стороны, микробные компоненты (клетки и метаболиты), формируя кишечно-мозговую ось, могут влиять на выработку гипоталамического гормона — окситоцина. Работы по изучению влияния бактерий на секрецию окситоцина малочисленны и проведены на модели лактобактерий. Установлено, что лактобациллы стимулируют продукцию окситоцина, что благотворно отражается на заживлении инфицированных ран в эксперименте [51]. Также отмечено, что Lactobacillus spp. стимулируют окситоцин, который регулирует экспрессию INF-γ и CD25 для иммунной толерантности. Все эти усилия предупреждают избыточную реактивность как своих, так и внешних факторов среды, которые способствуют преждевременному старению организма. На моделях мышей показана эффективность индуцированных лактобациллами и их клеточными лизатами T-reg при участии нейропептидного гормона окситоцина [51–53].

Приведенные материалы вкупе с описанными нашими данными свидетельствуют, что микробиом усиливает регуляцию окситоцина, тем самым улучшая течение раневой инфекции, способствуя быстрейшему заживлению ран [19].

В свете обсуждаемой проблемы определенный интерес представляют данные оренбургских исследователей ИКВС УрО РАН, проводящих изучение биологических характеристик бифидофлоры в качестве ключевого регулятора здоровья человека.

Систематическое изучение микросимбиоценоза кишечного биотопа у человека позволило выявить феномен микробного распознавания свой– чужой в условиях взаимодействия доминантных (бифидофлора) и ассоциативных микросимбионтов [46].

Известно, что, независимо от уровня сложности, любые живые организмы (от прокариот до высших эукариот) имеют различные механизмы защиты от чужеродной информации, поскольку концепция «своего» тесно связана с самоидентификацией и саморегуляцией любой биологической системы [54].

Микробное распознавание и механизмы самоидентификации бактерий активно изучаются. L.M. Wenren с соавт. [55] в результате исследования роста культур Proteus mirabilis на поверхности агаровых сред отметили, что взаимоотношения микроорганизмов в бульонной культуре могут отличаться от таковых в модели «агаровой среды», поскольку в этом процессе имеют значение микробные метаболиты. A.E. Shank и соавт. [56] связывали регуляторные взаимодействия микроорганизмов с наличием в супернатанте сигнальных молекул. Очевидно, что изменение фенотипа микробных популяций при межмикробном взаимодействии осуществляется с помощью различных молекул, далее использующихся микробиотой в качестве индукторов новых метаболитов-посредников, что в конечном итоге оказывает влияние на формирование антагонистических либо синергидных связей между микроорганизмами [46].

С использованием приема индукции микробных метаболитов в условиях пары доминант–ассоциант был выявлен феномен оппозитного (усиление/подавление) влияния микросимбионтов на их биологические свойства (антагонистический, персистентный потенциал и способность к формированию биопленок), позволяющий реализовать принцип «свой–чужой» в условиях микросимбиоценоза. Дальнейшее развитие исследований по определению «чужеродности» штаммов микроорганизмов позволило определить биосовместимость бактерий в микробной композиции и оценить эффективность пробиотических препаратов [46].

Используя симбиотический подход на платформе нового направления «инфекционная симбиология», было определено, что не только организм хозяина, посредством различных механизмов врожденного и адаптивного иммунитета, выявляет и уничтожает «чужеродные» штаммы бактерий и грибов, но и сами микроорганизмы (представители доминантной микробиоты) способны определять «свои» и «чужие» виды микросимбионтов в составе микросимбиоценоза. Таким образом, своеобразная перестройка «микробного органа» человека позволяет микробиоте сформировать симбиотические связи для поддержания стабильного функционирования микросимбиоценоза на оптимальном уровне с целью выживания нормофлоры в той экологической нише человека, которую она занимает.

Заключение

Оценивая ретроспективу рассмотренного вопроса, можно сделать вывод о целесообразности продолжения накопления материала по выяснению механизмов защиты организма хозяина при помощи микробных клеток и их продуктов. Активно изучается возможность использования в качестве регуляторов гомеостаза организма человека сигнальных молекул, гормонов и цитокинов. Это очень интересная многообещающая тематика по выявлению новых «природоподобных» технологий, которые нам предстоит еще открыть, но учиться у Природы не зазорно.

Появление в третьем тысячелетии науки инфектологии значительно расширило рамки изучения отношений «паразит–хозяин» с включением симбиотического подхода на организменном и клональном уровнях персистентного потенциала патогенов.

Это позволило выявить роль кишечной микробиоты в регуляции гомеостаза хозяина через треугольник «кишечная микробиота–ГГНС–окситоцин» [19]. К этому можно присовокупить материалы, уточняющие биоэффекты данного универсального ключевого регулятора гомеостаза:

1) более быстрое заживление ран;

2) поддержание костно-мышечной массы тела человека;

3) улучшение ментального здоровья;

4) психотропное действие, регуляция социальной памяти и когнитивных функций;

5) пониженный риск ожирения;

6) усиление репродуктивной активности и др.

Описанный треугольник «микробиота–ГГНС–окситоцин» подтвержден экспериментально-клиническими материалами и органично вписывается в концепцию «кишечно-мозговой оси», характеризующую ряд важнейших физиологических функций хозяина, существенно дополняя их.

×

Об авторах

Олег Валерьевич Бухарин

Институт клеточного и внутриклеточного симбиоза, ФГБУН Оренбургский федеральный исследовательский центр, Уральское отделение РАН

Email: ofrc@list.ru

Бухарин Олег Валерьевич — доктор медицинских наук, акад. РАН, главный научный сотрудник.

460000, Оренбург

Россия

Наталья Борисовна Перунова

Институт клеточного и внутриклеточного симбиоза, ФГБУН Оренбургский федеральный исследовательский центр, Уральское отделение РАН

Автор, ответственный за переписку.
Email: perunovanb@gmail.com

Перунова Наталья Борисовнан — доктор медицинских наук, профессор РАН, ведущий научный сотрудник (с исполнением обязанностей зав. лабораторией) лаб. биомониторинга и молекулярно-генетических исследований.

460000, Оренбург

Россия

Список литературы

  1. Zheng X., Xie G., Zhao A., Zhao L., Yao C., Chiu N.H., et al. The footprints of gut microbial-mammalian cometabolism. J. Proteome Res. 2011; 10(12): 5512-22. https://doi.org/10.1021/pr2007945
  2. Le Gall G., Noor S.O., Ridgway K. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 2011; 10(9): 4208-18. https://doi.org/10.1021/pr2003598
  3. Beloborodova N.V, Olenin A.Y., Fedotcheva N.I., Shubina V, Teplova V.V. Effect of phenolic acids originating from microbes on mitochondria and neutrophils. Crit. Care. 2012; 16(Suppl. 3): 26.
  4. Matsumoto M., Kibe R., Ooga T., Aiba Y, Kurihara S., Sawaki E., et al. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Re: 2012; 2: 233. https://doi.org/10.1038/srep00233
  5. Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях. Общая реаниматология. 2012; 8(4): 42-54.
  6. Hooi D.S., Bycroft B.W., Chhabra S.R., Williams P., Pritchard D.I. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect. Immun. 2004; 72(11): 6463-70. https://doi.org/10.1128/iai.72.11.6463-6470.2004
  7. Pritchard D.I. Immune modulation by Pseudomonas aeruginosa quorum-sensing signal molecules. Int. J. Med. Microbiol. 2006; 296(2-3): 111-6. https://doi.org/10.1016/j.ijmm.2006.01.037
  8. Wu L., Holbrook C., Zaborina O., Ploplys E., Rocha F., Pel¬ham D., et al. Pseudomonas aeruginosa expresses a lethal virulence determinant, the PA-I lectin/adhesin, in the intestinal tract of a stressed host: the role of epithelia cell contact and mole¬cules of the quorum sensing signaling system. Ann. Surg. 2003; 238(5): 754-64. https://doi.org/10.1097/01.sla.0000094551.88143.f8
  9. Zaborina O., Lepine F., Xiao G., Valuckaite V, Chen Y, Li T., et al. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog. 2007; 3(3): 1-15. https://doi.org/10.1371/journal.ppat.0030035
  10. Lesouhaitier O., Veron W., Chapalain A., Madi A., Blier A.S., Dagorn A., et al. Gram-negative bacterial sensors for eukaryotic signal molecules. Sensors (Basel). 2009; 9(9): 6967-90. https://doi.org/10.3390/s90906967
  11. Bader M.W., Sanowar S., Daley M.E., Schneider A.R., Cho U., Xu W., et al. Recognition ofantimicrobial peptides by a bacterialsensor kinase. Cell. 2005; 122(3): 461-72. https://doi.org/10.1016/j.cell.2005.05.030
  12. Vila G., Resl M., Stelzeneder D., Struck J., Maier C., Riedl M., et al. Plasma NT-proBNP increases in response to LPS administration in healthy men. J. Appl. Physiol. (1985). 2008; (105): 1741-5. https://doi.org/10.1152/japplphysiol.90442.2008
  13. Veron W., Lesouhaitier O., Pennanec X., Rehel K., Leroux P., Orange N., et al. Natriuretic peptides affect Pseudomonas aeru-ginosa and specifically modify lipopolysaccharide biosynthesis. FEBS J. 2007; 274(22): 5852-64. https://doi.org/10.1111/j.1742-4658.2007.06109.x
  14. Veron W., Orange N., Feuilloley M.G., Lesouhaitier O. Natri-uretic peptides modify Pseudomonas fluorescens cytotoxicity by regulating cyclic nucleotides and modifying LPS structure. BMC Microbiol. 2008; 8: 114. https://doi.org/10.1186/1471-2180-8-114
  15. Стадников А.А., Бухарин О.В. Гипоталамическая нейросекреция и структурно-функциональный гомеостаз прои эукариот. Оренбург; 2012.
  16. Стадников А.А. Роль гипоталамических нейропептидов во взаимодействии прои эукариот (структурно-функциональные аспекты). Екатеринбург; 2001.
  17. Чернова О.Л. Антилизоцимная активность стафилококков, выделенных при бактерионосительстве: автореф. дисс. ... канд. биол. наук. Челябинск; 1989. 17 с.
  18. Кириллов Д.А. Лекарственная регуляция персистентных свойств микроорганизмов: автореф. дисс. ... канд. мед. наук. Оренбург; 2004. 22 с.
  19. Бухарин О.В., Стадников А.А., Перунова Н.Б. Роль окситоцина и микробиоты в регуляции взаимодействий прои эукариот при инфекции. Екатеринбург; 2018.
  20. Widmaier U., Shah P.R., Lee G. Interactions between oxytocin, glucagon and streptozotocin induced diabetic rats. Regul. Pept. 1991; 34(3): 235-49. https://doi.org/10.1016/0167-0115(91)90182-g
  21. Бухарин О.В., Курлаев П.П., Перунова Н.Б., Скоробогатых Ю.И. Экспериментальное изучение комбинации ципрофлоксацина с окситоцином на образование биоплёнок условно-патогенными бактериями. Журнал микробиологии, эпидемиологии и иммунобиологии. 2010; (6): 3-7.
  22. Костюченко А.Л., Филин В.И. Неотложная панкреатология. СПб.: Деан; 2000.
  23. Демидов В.М., Демидов С.М. Перспективы интрабурсального применения даларгина и сандостатина при лапароскопических вмешательствах у больных с панкреонекрозами. Анналы хирургической гепатологии. 2002; 7(1): 200.
  24. Наточин Ю.В., Голосова Д.Р., Шахматова Е.И. Новая функциональная роль окситоцина участие в осморегуляции. Доклады Академии наук. 2018; 479(6): 712-5. https://doi.org/10.7868/S0869565218120228
  25. Greenberg A.S., Obin M.S. Obesity and the role of adipose tis-sue in inflammation and metabolism. Am. J. Clin. Nutr 2006; 83(2): 461-5. https://doi.org/10.1093/ajcn/83.2.461s
  26. Toussirot E., Streit G., Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med. Chem. 2007; 14(10): 1095-100. https://doi.org/10.2174/092986707780362826
  27. El Homsi M., Ducroc R., Claustre J. et al. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK path-ways. Am J. Physiol. Gastrointest. Liver Physiol. 2007; 293(1): G365-73. https://doi.org/10.1152/ajpgi.00091.2007
  28. Jenkins N.L., Turner J.L., Dritz S.S., Durham S.K., Minton J.E. Changes in circulating insulinlike growth factor-I, insulinlike growth factor binding proteins, and leptin in weaned pigs in-fected with Salmonella enterica serovar Typhimurium. Domest. Anim. Endocrinol. 2004; 26(1): 49-60. https://doi.org/10.1016/j.domaniend.2003.09.001
  29. Mykoniatis A., Anton M., Wilk M., Wang C.C., Ungsunan L., Bluher S., et al. Leptin mediates Clostridium difficile toxin A-induced enteritis in mice. Gastroenterology. 2003; 124(3): 683-91. https://doi.org/10.1053/gast.2003.50101
  30. Chen Y.T., Tsai S.H., Sheu S.Y. et al. Ghrelin improves LPS-induced gastrointestinal motility disturbances: roles of NO and prostaglandin E2. Shock. 2010; (33): 205-212.
  31. Waseem T., Duxbury M., Ito H., Tsai L.H. Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct sig-naling pathways. Surgery. 2008; 33(2): 205-12. https://doi.org/10.1097/shk.0b013e3181ae841b
  32. Lambert G. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci. 2009; 87(14 Suppl.): E101-8. https://doi.org/10.2527/jas.2008-1339
  33. Zav'yalov V, Chernovskaya T.V., Navolotskaya E.V., Karlyshev A.V., MacIntyre S., Vasiliev A.M., et al. Specific high af-finity binding of human interleukin 1 beta by Caf1A usher pro-tein of Yersinia pestis. FEBS Lett. 1995; 371(1): 65-8. https://doi.org/10.1016/0014-5793(95)00878-d
  34. Wu L., Holbrook C., Zaborina O., Ploplys E., Rocha F., Pelham D., et al. Pseudomonas aeruginosa expresses a lethal virulence determinant, the PA-I lectin/adhesin, in the intestinal tract of a stressed host: the role of epithelia cell contact and molecules of the quorum sensing signaling system. Ann. Surg. 2003; 238(5): 754-64. https://doi.org/10.1097/01.sla.0000094551.88143.f8
  35. Романова Ю.М., Алексеева Н.В., Степанова Т.В., Разумихин М.В., Томова А.С., Шилов И.А. и др. Влияние фактора некроза опухоли на размножение вегетативных и некультивируемых форм сальмонелл. Журнал микробиологии, эпидемиологии и иммунобиологии. 2002; (4): 20-5.
  36. Kanangat S., Meduri Gu., Tolley E.F., Patterson D.R., Meduri C.U., Pak C., et al. Effects of cytokines and endotoxin on the intracellular growth of bacteria. Infect. Immun. 1999; 67(6): 2834-40. https://doi.org/10.1128/iai.67.6.2834-2840.1999
  37. Wilson M., Seymour R., Henderson B. Bacterial perturbation of cytokine networks. Infect. Immun. 1998; 66(6): 2401-9. https://doi.org/10.1128/iai.66.6.2401-2409.1998
  38. Potempa J., Pike R.N. Corruption of innate immunity by bacterial proteases. J. Innate. Immun. 2009; 1(2): 70-87. https://doi.org/10.1159/000181144
  39. Sheets S.M., Robles-Price A.G., McKenzie R.M., Casiano C.A., Fletcher H.M., et al. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. Front. Biosci. 2008; 13: 3215-38. https://doi.org/10.2741/2922
  40. Leidal K.G., Munson K.L., Johnson M.C., Denning G.M. Metalloproteases from Pseudomonas aeruginosa degrade hyman RANTES, MCP-1, and ENA-78. J. Interferon. Cytokine. Res. 2003; 23(6): 307-18. https://doi.org/10.1089/107999003766628151
  41. Tateda K., Ishii Y, Horikawa M., Matsumoto T., Miyairi S., Pechere J.C., et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 2003; 71(10): 5785-93. https://doi.org/10.1128/iai.71.10.5785-5793.2003
  42. Telford G., Wheeler D., Williams P., Tomkins P.T., Appleby P., Sewell H., et al. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect. Immun. 1998; 66(1): 36-42. https://doi.org/10.1128/iai.66.L36-42.1998
  43. Boontham P., Robins A., Chandran P., Pritchard D., Camara M., Williams P., et al. Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis. Clin. Sci. (Lond.) 2008; 115(11): 343-51. https://doi.org/10.1042/cs20080018
  44. Stoltz D.A., Ozer E.A., Ng C.J., Yu J.M., Reddy S.T., Lusis A.J., et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2007; 292(4): L852-60. https://doi.org/10.1152/ajplung.00370.2006
  45. Bar-Rogovsky H., Hugenmatter A., Tawfik D.S. The evolution-ary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J. Biol. Chem. 2013; 288(33): 23914-27. https://doi.org/10.1074/jbc.m112.427922
  46. Бухарин О.В., Перунова Н.Б. Микросимбиоценоз. Екатеринбург; 2014.
  47. Евдокименко А.Ю., Досадина Э.Э., Эль Регистан Г.И., Белов А.А. Влияние алкилоксибензолов на ферментативную активность некоторых гидролаз при различных условиях. Успехи в химии и химической технологии. 2016; 30(9): 10-2.
  48. Gordon J.I. Honor thy gut symbionts redux. Science. 2012; 336(6086): 1251-3. https://doi.org/10.1126/science.1224686
  49. Бухарин О.В. Адаптивные стратегии взаимодействия возбудителя и хозяина при инфекции. Вестник Российской академии наук. 2018; 88(7): 637-43. https://doi.org/10.31857/S086958730000087-3
  50. Тарасенко В.С., Фадеев С.Б., Бухарин О.В. Хирургическая инфекция мягких тканей (клинико-микробиологический аспект). Екатеринбург; 2015.
  51. Poutahidis T., Kearney S.M., Levkovich T., Qi P., Varian B.J., Lakritz J.R., et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One. 2013; 8(10): e78898. https://doi.org/10.1371/journal.pone.0078898
  52. Poutahidis T., Springer A., Levkovich T., Qi P., Varian B.J., Lakritz J.R., et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One. 2014; 9(1): e84877. https://doi.org/10.1371/journal.pone.0084877
  53. Poutahidis T., Kleinewietfeld M., Smillie C., Levkovich T., Perrotta A., Bhela S., et al. Microbial reprogramming inhibits Western diet-associated obesity. PLoS One. 2013; 8(7): e68596. https://doi.org/10.1371/journal.pone.0068596
  54. Lopez-Larrea C., eds. Self and Nonself. New York: Springer; 2012.
  55. Wenren L.M., Sullivan N.L., Cardarelli L., Septer A.N., Gibbs K.A. Two independent pathways for self-recognition in proteus mirabilis are linked by type VI-dependent export. mBio. 2013; 4(4): e00374-13. https://doi.org/10.1128/mbio.00374-13
  56. Shank A.E., Kolter R. New developments in microbial inter-species signaling. Curr Opin. Microbiol. 2009; 12(2): 205-14. https://doi.org/10.1016/j.mib.2009.01.003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Бухарин О.В., Перунова Н.Б., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС77-75442 от 01.04.2019 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах