Бактериофаги и иммунная система макроорганизма
- Авторы: Иванова И.А.1, Труфанова А.А.1, Филиппенко А.В.1, Беспалова И.А.1, Омельченко Н.Д.1
-
Учреждения:
- ФКУЗ «Ростовский-на-Дону противочумный институт» Роспотребнадзора
- Выпуск: Том 96, № 6 (2019)
- Страницы: 79-84
- Раздел: ОБЗОРЫ
- Дата подачи: 16.12.2019
- Дата принятия к публикации: 16.12.2019
- Дата публикации: 16.12.2019
- URL: https://microbiol.crie.ru/jour/article/view/499
- DOI: https://doi.org/10.36233/0372-9311-2019-6-79-85
- ID: 499
Цитировать
Полный текст
Аннотация
В связи с появлением в последние годы антибиотикорезистентных штаммов бактерий лечение и профилактика различных инфекций бактериофагами вновь стали актуальным направлением исследований. Однако при использовании фагов в этих целях необходимо учитывать иммунные ответы макроорганизма на их введение. Сведения о влиянии бактериальных вирусов на систему врождённого и адаптивного иммунитета млекопитающих в доступной литературе немногочисленны и противоречивы. Этот вопрос требует дальнейшего детального изучения, особенно при разработке новых лечебно-профилактических биопрепаратов на основе бактериофагов.
Ключевые слова
Полный текст
Бактериофаги, используемые для лечения бактериальных заболеваний человека, с середины XX века были вытеснены антибиотиками. Однако, по заявлению Всемирной организации здравоохранения, лекарственная устойчивость микроорганизмов может в скором времени нивелировать достижения современной медицины, в том числе в борьбе с инфекционными заболеваниями, сделав их неуправляемыми [1]. В связи с этим в последние десятилетия лечение и профилактика вирусами бактерий вновь стали актуальными направлениями [2].
Преимущества бактериофагов перед антибиотиками заключаются в следующем: они способны уничтожать бактерии, устойчивые к антибиотикам; свободно проникают в ткани организма человека и животного, не нарушая баланса микрофлоры хозяина; не вызывают побочных эффектов; сочетаются со многими лекарственными препаратами; оказывают иммуностимулирующее действие и не обладают иммуносупрессивным влиянием [3]. Благодаря вышеперечисленному в настоящее время бактериофаги активно используются в качестве антимикробных препаратов при разных бактериальных инфекциях желудочно-кишечного тракта (ЖКТ), ЛОР-органов, дыхательных путей, урогенитального тракта, генерализованных септических заболеваниях, ожоговых ранах, хирургических инфекциях и т. д. Эти препараты нашли широкое применение и с профилактической целью в условиях чрезвычайных ситуаций природного характера (наводнения и т. д.) [4, 5], а также при инфекциях, связанных с оказанием медицинской помощи [2].
Однако существуют противоречивые сведения о влиянии фагов на врождённый и адаптивный иммунитет млекопитающих [6]. Этот вопрос требует детального изучения, особенно при разработке новых лечебно-профилактических биопрепаратов на основе бактериофагов [7].
Известно, что фаги способны проникать через эпителиальные барьеры слизистых оболочек благодаря специализированным клеткам иммунной системы (М-клеткам, бокаловидным) и, возможно, клеткам эпителия кишечника и других отделов ЖКТ [8]. Независимо от способа введения, бактериофаги поступают в общий ток крови. После перорального приёма фаговые частицы обнаруживаются в кровотоке через 1 ч. Затем они транспортируются в лимфатические узлы, печень и селезёнку, где и адсорбируются [9]. Необходимо отметить, что скорость попадания фагов, так же, как и бактерий, из ЖКТ в кровь может существенно увеличиваться при воспалительном ответе [3]. Выводятся фаги из организма через кишечник [10] и почки. После однократного приёма пациентами бактериальные вирусы выделялись с мочой в течение 5-6 сут с постепенным уменьшением титра [9].
Благодаря способности проникать в кровяное русло и ткани бактериофаги взаимодействуют с клетками иммунной системы как локально, так и системно [11, 12].
При первом попадании в макроорганизм фаги встречаются с эффекторами врождённого иммунитета. Они взаимодействуют с макрофагами, дендритными и эпителиальными клетками и посредством трансмембранных рецепторов, распознающих разнообразные типы патоген-ассоциированных молекулярных маркёров, активируют экспрессию генов разнообразных цитокинов [13]. Некоторые фаги могут контактировать с клетками иммунной системы посредством клеточных рецепторов, принадлежащих к семейству β-интегринов, а также используя последовательность LysGly-Asp, находящуюся в капсидном белке gp24. Аналогичная последовательность присутствует в лиганде CD40, играющем важную роль в активации эндотелиальных клеток, тромбоцитов, Tи B-лимфоцитов, в развитии воспаления [14].
В то же время показано, что очищенный фаг T4 и лизаты фагов Echerichia coli не оказывают влияния на экспрессию TLR2 и TLR4 на моноцитах человека [15].
Иммунная система может распознавать и инактивировать вирусные частицы [16, 17]. Особенно быстро уничтожение фагов осуществляется в печени. Так, клетки Купфера поглощают их в четыре раза эффективнее, чем макрофаги селезёнки. Выявлено, что в печени уничтожается до 99% бактериофагов в течение 30 мин после введения [18].
Фаги влияют на фагоцитоз и развитие воспалительного ответа, но, в зависимости от их вида, дозы и способа введения, могут либо усиливать, либо ингибировать эти процессы [16, 17].
Иностранными авторами обнаружено, что лечение инфицированных и интактных мышей фагами не влияло на интенсивность фагоцитоза гранулоцитами и моноцитами крови. Аналогичные результаты получены при изучении действия гомои гетерологичных бактериальных вирусов в разных титрах на фагоцитарную активность нейтрофилов и моноцитов крови человека, а также на миграцию этих клеток [14].
Однако российскими исследователями показано, что препарат Пиобактериофаг, в отличие от антибиотиков, при местном введении в пазухи улучшал показатели завершённости фагоцитоза, что свидетельствовало о снижении интенсивности воспаления и восстановлении адекватного иммунного ответа слизистых оболочек носа [19]. Благодаря способности бактериофагов активировать фагоцитоз и повышать метаболическую активность нейтрофилов удалось предотвратить рецидивы инфекции и хронизацию воспалительного процесса [20, 21], что особенно важно при лечении хронических воспалительных заболеваний на фоне иммуносупрессивных состояний и бактерионосительства [9, 22, 23].
Описано также, что фаги снижают чрезмерную продукцию активных форм кислорода при бактериальных инфекциях, предупреждая окислительный стресс и повреждение тканей [14]. Кроме этого, сами вирусы вызывают высвобождение небольшого количества активных форм кислорода [21].
Имеются данные, свидетельствующие о том, что фаги и их белки не только не стимулируют образование медиаторов воспаления [14, 24], но и способны уменьшать воспаление, вызванное иммунным ответом на бактерии [16]. Высказано предположение, что фаги могут обладать защитным потенциалом, не только уничтожая патогены, но и подавляя местные иммунные и воспалительные реакции в кишечнике, тем самым способствуя поддержанию иммунного гомеостаза [14]. В то же время за счёт высвобождения большого количества эндотоксина бактериофаги могут вызывать воспаление и повышение уровней фактора некроза опухоли (ФНОα), интерлейкинов (ИЛ) -1β и -6 [25, 26].
Как макромолекулярная структура, бактериофаг представляет собой антиген и обладает иммуногенностью [7, 27]. Показано, что на его антигенную активность могут влиять даже незначительные изменения в составе белков фаговой оболочки [17].
После попадания бактериофагов в макроорганизм запускаются механизмы специфического гуморального и клеточного иммунных ответов. Идёт процессинг фаговых антигенов антигенпредставляющими клетками. Фаговые антигены могут быть представлены дендритными клетками Т-лимфоцитам, что приводит к развитию клеточного иммунитета и высвобождению цитокинов [6].
Некоторыми авторами показано, что иммунная система позвоночных не индуцирует специфический клеточный ответ, и Т-лимфоциты не участвуют в элиминации бактериофагов [16, 17]. Однако другие исследователи отмечали, что под влиянием бактериофагов уровень лимфоцитов увеличивался, преимущественно за счёт Т-клеток [28], причём этот процесс усиливался при бустерной иммунизации фагами. Так, in vitro выявлено усиление пролиферации спленоцитов мышей, предварительно иммунизированных сальмонеллёзными бактериофагами, по сравнению с таковой у интактных животных [14]. Есть сведения о том, что фаги могут, наоборот, ингибировать активацию и пролиферацию Т-клеток человека in vitro [29].
Сведения, касающиеся индукции гуморального иммунного ответа на бактериофаги, в литературе тоже неоднозначны [30]. Исследования гуморального иммунитета, с одной стороны, показали отсутствие достоверных различий в содержании иммуноглобулинов на фоне применения фагов [31], а с другой стороны, повторный курс их приёма сопровождается подъёмом уровня антифаговых антител [17]. После однократного приёма фага F8 Pseudomonas продукция IgM у мышей достигала максимума примерно через 5-10 дней, а затем несколько снижалась. После повторного введения фага был зарегистрирован достаточно высокий уровень антифаговых IgG [32]. Следует отметить, что сыворотка, содержащая IgM, только снижала активность фага, а сыворотка с IgG полностью инактивировала его. Комплемент сыворотки в присутствии специфических антител также уменьшал жизнеспособность бактериофагов. Такой механизм свидетельствует о том, что фаг вызывает иммунный ответ, характерный для эукариотических вирусов [33]. Ферменты бактериофагов, благодаря своей белковой природе, также стимулируют быстрый иммунный ответ и выработку иммуноглобулинов [16, 34].
Экспериментально доказано, что высокий уровень продукции специфических антител способствует быстрой элиминации фагов и является одной из причин снижения эффективности фаготерапии [18, 35]. У новорождённых и детей до года нейтрализующие антитела обнаруживаются в сыворотке крови в меньшем количестве, что делает применение фагов в этих группах более эффективным [10].
Данные литературы свидетельствуют о том, что бактериофаги могут оказывать как положительное влияние на иммунный статус человека [28], стимулируя выработку цитокинов, пролиферацию Т-клеток, синтез антител, фагоцитоз [36], так и вызывать лишь кратковременное увеличение функциональной активности Ти В-лимфоцитов, NK-клеток и их количества в периферической крови [14]. Возможно, это связано с тем, что успех фаговой терапии во многом зависит от иммунной системы пациента [17].
Известно о способности бактериофагов выступать в роли иммуногенных носителей и адъювантов [27]. В то же время они могут подавлять специфичные и неспецифичные иммунные реакции. Например, бактериальные вирусы ингибируют продукцию ИЛ-2, ФНОа, интерферона-γ лейкоцитами человека [29].
Фаги снижают воспалительную инфильтрацию трансплантата, которая может привести к его повреждению и даже к потере, а также непосредственно ингибируют аллотрансплантат-индуцированную активацию T-клеток [27].
Препараты бактериофагов, подобно пробиотикам, регулируют механизмы иммунитета в кишечнике [37]. Доказано стимулирующее действие стафилококкового фага на бифидобактерии [28, 38, 39]. При этом описана способность бактериофагов поддерживать иммунную толерантность к чужеродным антигенам микроорганизмов кишечника [29]. Бактериальные вирусы способствуют нормализации микрофлоры, участвуют в поддержании колонизационной резистентности и оральной толерантности, что обеспечивает нормализацию механизмов гуморального и клеточного иммунитета [3].
Таким образом, данные, представленные в обзоре, отражают неоднозначное мнение исследователей о влиянии бактериофагов на иммунную систему и их участии в регуляции иммунитета. При оценке действия вирусов бактерий на макроорганизм следует учитывать природу иммунного ответа на их введение, которая зависит от физико-химических свойств фага, способа, дозы, кратности применения [13, 32, 40] и иммунного статуса пациента [32, 41, 42]. При разработке новых препаратов и использовании известных бактериофагов в лечебных и профилактических целях для создания условий их длительного персистирования в организме необходимо учитывать активацию вирусными частицами иммунных реакций человека [9], а также вероятность элиминации фагов специфическими антителами [35].
Финансирование. Исследование не имело спонсорской поддержки.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Об авторах
И. А. Иванова
ФКУЗ «Ростовский-на-Дону противочумный институт» Роспотребнадзора
Автор, ответственный за переписку.
Email: ivanova_ia@antiplague.ru
ORCID iD: 0000-0001-7068-4071
Иванова Инна Александровна, канд. биол. наук, ведущий научный сотрудник с врио зав. лабораторией иммунологии особо опасных инфекций, 344002, г. Ростов-на-Дону, Россия Россия
А. А. Труфанова
ФКУЗ «Ростовский-на-Дону противочумный институт» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-4770-5994
344002, г. Ростов-на-Дону, Россия Россия
А. В. Филиппенко
ФКУЗ «Ростовский-на-Дону противочумный институт» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-1103-4244
344002, г. Ростов-на-Дону, Россия Россия
И. А. Беспалова
ФКУЗ «Ростовский-на-Дону противочумный институт» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-7503-9183
344002, г. Ростов-на-Дону, Россия Россия
Н. Д. Омельченко
ФКУЗ «Ростовский-на-Дону противочумный институт» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0001-5208-7724
344002, г. Ростов-на-Дону, Россия Россия
Список литературы
- ВОЗ. Устойчивость к противомикробным препаратам. Информационный бюллетень. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/antimicrobial-resistance
- Зуева Л.П., Асланов Б.И., Акимкин В.Г. Современный взгляд на роль бактериофагов в эволюции госпитальных штаммов и профилактике инфекций, связанных с оказанием медицинской помощи. Журнал микробиологии, эпидемиологии и иммунобиологии. 2014; (3): 100-7.
- Топчий Н.В., Топорков А.С. Бактериофаги в лечении острых кишечных инфекций. Медицинский совет. 2015; (8): 74-81.
- Алсынбаев М.М., Медведев Ю.А., Туйгуно М.М. Биопрепараты и ведущие направления их лечебно-профилактического применения. Уфа; 2008.
- Красильников И.В., Лобастова А.К., Лыско К.А. Краткий обзор современного состояния и перспективных направлений развития производства и применения лечебно-профилактических препаратов бактериофагов. Вестник биотехнологии. 2010; (2): 28-33.
- Duerkop B.A., Hooper L.V. Resident viruses and their interactions with the immune system. Nat. Immunol. 2013; 14(7): 654-9. Doi: https://doi.org/10.1038/ni.2614
- Domingo-Calap Р., Delgado-Martínez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics (Basel). 2018; 7(3): 66. Doi: https://doi.org/10.3390/antibiotics7030066
- Бехтерева М.К., Иванова В.В. Место бактериофагов в терапии инфекционных заболеваний желудочно-кишечного тракта. Consilium medicum. Педиатрия. 2014; (2): 24-9.
- Катер Э., Сулаквелидзе А. Бактериофаги: биология и практическое применение. М.: Научный мир; 2012.
- Пагава К.И., Гачечиладзе К.К., Коринтели И.А., Дзулиашвили М.Г., Алавидзе З.И., Хойле Н. и др. Что происходит при пероральном приеме бактериофага ребенком? Georgian Medical News. 2011; (7-8): 101-5.
- Duerr D.M., White S.J., Schluesener H.J. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J. Virol. Methods. 2004; 116(2): 177-80. Doi: https://doi.org/10.1016/j.jviromet.2003.11.012
- Hamzeh-Mivehroud M., Mahmoudpour A., Rezazadeh H., Dastmalchi S. Non-specific translocation of peptidedisplaying bacteriophage particles across the gastrointestinal barrier. Eur. J. Pharm Biopharm. 2008; 70(2): 577-81. Doi: https://doi.org/10.1016/j.ejpb.2008.06.005
- Кaur T., Nafissi N., Wasfi O., Sheldon K., Wettig S., Slavcev R. Immunocompatibility of bacteriophages as nanomedicines. J. Nanotechnol. 2012; (l): 1-13. Doi: https://doi.org/10.1155/2012/247427
- Górski A., Dąbrowska K., Międzybrodzki R., Weber-Dąbrowska B., Łusiak-Szelachowska M., Jończyk-Matysiak E., et al. Phages and immunomodulation. Future Microbiol. 2017; 12(10): 905-14. Doi: https://doi.org/10.2217/FMB-2017-0049
- Flaherty J.E., Harbaugh B.K., Jones J.B., Somodi G.C. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geraniums. Hortscience. 2001; 36: 90-100. Doi: https://doi.org/10.21273/hortsci.36.1.98
- Górski A., Międzybrodzki R., Borysowski J., Dabrowska К., Wierzbicki P., Ohams M., et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res. 2012; 83: 41-71. Doi: https://doi.org/10.1016/B978-0-12-394438-2.00002-5
- Maciejewska B., Olszak Т., Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl. Microbiol. Biotechnol. 2018; 102(6): 2563-81. Doi: https://doi.org/10.1007/s00253-018-8811-1
- Merril C.R., Scholl D., Adhya S.L. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2003; 2(6): 489-97. Doi: https://doi.org/10.1038/nrd1111
- Арефьева Н.А., Азнабаева Л.Ф., Ворошилова Н.Н., Султанов Н.М. Сравнительное изучение влияния способов лечения на состояние местного иммунитета слизистых оболочек носа больных хроническим гнойным риносинуситом. Фундаментальные исследования. 2007; (4): 49.
- Лазарева Е.Б. Бактериофаги для лечения и профилактики инфекционных заболеваний. Антибиотики и химиотерапия. 2003; 48(1): 36-40.
- Przerwa A., Zimecki М., Switała-Jeleń К., Dabrowska K., Krawczyk E., Łuczak M., et al. Effects of bacterio phages on free radical production and phagocytic functions. Med. Microbiol. Immunol. 2006; 195(3): 143-50. Doi: https://doi.org/10.1007/s00430-006-0011-4
- Ильина Т.С. Структурная организация и механизмы перемещений генных кассет, кодирующих резистентность к антибиотикам и факторы вирулентности бактерий. Молекулярная генетика, микробиология и вирусология. 2001; (1): 3-12.
- Карабелеш Е.Е., Ткаченко С.А., Панкратов С.М., Демедюк О.И. Применение бактериофагов, как концепция лечебного и профилактического направления в медицине. Актуальные проблемы транспортной медицины. 2008; 1(11): 135-9.
- Mills S., Shanahan F., Stanton C., Hill C., Coffey A., Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut. Microbes. 2013; 4(1): 4-16. Doi: https://doi.org/10.4161/gmic.22371
- Maes M., Kubera M., Leunis J., Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. J. Affect. Dis. 2012; 141(1): 55-62. Doi: https://doi.org/10.1016/j.jad.2012.02.023
- Tetz G.V., Ruggles K.V., Zhou H. et al. Bacteriophages as potential new mammalian pathogens. Sci. Rep. 2017; 7(1): 7043. Doi: https://doi.org/10.1038/s41598-017-07278-6
- Бондаревич Н.В., Новик Г.И. Бактериофаги и иммунный ответ организма человека. Вестник национальной академии наук Белоруссии. Серия медицинские науки. 2015; (2): 112-6.
- Чушков Ю.В. Бактериофаги в лечении и профилактике инфекционных заболеваний. Фарматека. 2011; (6): 34-41.
- Górski A., Ważna E., Dąbrowska B.W., Dabrowska К. Bacteriophage translocation. FEMS Immunol. Med. Microbiol. 2006; 46(3): 313-9. Doi: https://doi.org/10.1111/j.1574-695X.2006.00044.x
- Алешкин В.А., Новикова Л.И., Бочкарева С.С., Алешкин А.В., Ершова О.Н., Киселева И.А. и др. Проблема антифагового иммунного ответа при энтеральной фаготерапии. В кн.: Материалы научно-практической конференции «Диагностика и профилактика инфекционных болезней на современном этапе». Новосибирск; 2016.
- Дарбеева О.С., Жиленков Е.Л. Бактериофаги. В кн.: Лабинская А.С., ред. Общая и санитарная микробиология с техникой микробиологических исследований. М.; 2004.
- Hodyra-Stefaniak K., Miernikiewicz P., Drapała J., Drab M., Jończyk-Matysiak E., Lecion D., et al. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci. Rep. 2015; 5: 14802. Doi: https://doi.org/10.1038/srep14802
- Hangartner L., Zinkernagel R.M., Hengartner H. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol. 2006; 6(3): 231-43. Doi: https://doi.org/10.1038/nri1783
- Fischetti V.A. Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int. J. Med. Microbiol. 2010; 300: 357-62. Doi: https://doi.org/10.1016/j.ijmm.2010.04.002
- Бочкарева С.С., Алешкин А.В., Ершова О.Н., Новикова Л.И., Афанасьев С.С., Киселева И.А. и др. Иммунологические аспекты фаготерапии инфекций, связанных с оказанием медицинской помощи, в отделении нейрореанимации. Журнал микробиологии, эпидемиологии и иммунобиологии. 2017; (4): 42-8.
- Borysowski J., Dabrowska K., Ohams M. The Response of the Immune System to Phage: Potential Associations with Phage Therapy. Bacteriophages and Probiotics – Alternatives to Antibiotics. Tbilisi, Georgia; 2012.
- Stagg J.A., Hart A.L., Knight S.C., Kamm M.A. Microbial-gut interactions in health and disease. Interactions between dendritic cells and bacteria in the regulation of intestinal immunity. Best Pract. Res. Clin. Gastroenterol. 2004; 18(2): 255-70. Doi: https://doi.org/10.1016/j.bpg.2003.10.004
- Алешкин А.В., Воложанцев Н.В., Светоч Э.А., Алешкин В.А., Афанасьев С.С., Борзилов А.И. и др. Бактериофаги как пробиотики и средства деконтаминации пищевых продуктов. Астраханский медицинский журнал. 2012; (3): 31-9.
- Старкова О.М., Одегова Т.Ф., Главатских И.А. Определение емкости рынка бактериофагов на региональном уровне. В кн.: Фармация на современном этапе – проблемы и достижения. Часть 1. М.; 2000: 133-5.
- Stern A., Sorek R. The phage-host arms race: Shaping the evolution of microbes. Bioеssays. 2010; 33(1): 43-51. Doi: https://doi.org/10.1002/bies.201000071
- Cerveny K.E., Depaola A., Duckworth D.H., Gulig P.A. Phage therapy of local and systemic disease caused by Vibrio vulnificusin iron-dextran-treated mice. Infect. Immun. 2002; 70: 6251-62. Doi: https://doi.org/10.1128/iai.70.11.6251-6262.2002
- Nilsson A.S. Phage therapy – constraints and possibilities. Ups. J. Med. Sci. 2014; 119(2): 192-8. Doi: https://doi.org/10.3109/03009734.2014.902878